View source on GitHub |
Returns a one-hot tensor.
tf.one_hot(
indices, depth, on_value=None, off_value=None, axis=None, dtype=None, name=None
)
The locations represented by indices in indices
take value on_value
,
while all other locations take value off_value
.
on_value
and off_value
must have matching data types. If dtype
is also
provided, they must be the same data type as specified by dtype
.
If on_value
is not provided, it will default to the value 1
with type
dtype
If off_value
is not provided, it will default to the value 0
with type
dtype
If the input indices
is rank N
, the output will have rank N+1
. The
new axis is created at dimension axis
(default: the new axis is appended
at the end).
If indices
is a scalar the output shape will be a vector of length depth
If indices
is a vector of length features
, the output shape will be:
features x depth if axis == -1
depth x features if axis == 0
If indices
is a matrix (batch) with shape [batch, features]
, the output
shape will be:
batch x features x depth if axis == -1
batch x depth x features if axis == 1
depth x batch x features if axis == 0
If indices
is a RaggedTensor, the 'axis' argument must be positive and refer
to a non-ragged axis. The output will be equivalent to applying 'one_hot' on
the values of the RaggedTensor, and creating a new RaggedTensor from the
result.
If dtype
is not provided, it will attempt to assume the data type of
on_value
or off_value
, if one or both are passed in. If none of
on_value
, off_value
, or dtype
are provided, dtype
will default to the
value tf.float32
.
Note: If a non-numeric data type output is desired (tf.string
, tf.bool
,
etc.), both on_value
and off_value
must be provided to one_hot
.
indices = [0, 1, 2]
depth = 3
tf.one_hot(indices, depth) # output: [3 x 3]
# [[1., 0., 0.],
# [0., 1., 0.],
# [0., 0., 1.]]
indices = [0, 2, -1, 1]
depth = 3
tf.one_hot(indices, depth,
on_value=5.0, off_value=0.0,
axis=-1) # output: [4 x 3]
# [[5.0, 0.0, 0.0], # one_hot(0)
# [0.0, 0.0, 5.0], # one_hot(2)
# [0.0, 0.0, 0.0], # one_hot(-1)
# [0.0, 5.0, 0.0]] # one_hot(1)
indices = [[0, 2], [1, -1]]
depth = 3
tf.one_hot(indices, depth,
on_value=1.0, off_value=0.0,
axis=-1) # output: [2 x 2 x 3]
# [[[1.0, 0.0, 0.0], # one_hot(0)
# [0.0, 0.0, 1.0]], # one_hot(2)
# [[0.0, 1.0, 0.0], # one_hot(1)
# [0.0, 0.0, 0.0]]] # one_hot(-1)
indices = tf.ragged.constant([[0, 1], [2]])
depth = 3
tf.one_hot(indices, depth) # output: [2 x None x 3]
# [[[1., 0., 0.],
# [0., 1., 0.]],
# [[0., 0., 1.]]]
indices
: A Tensor
of indices.depth
: A scalar defining the depth of the one hot dimension.on_value
: A scalar defining the value to fill in output when indices[j]
= i
. (default: 1)off_value
: A scalar defining the value to fill in output when indices[j]
!= i
. (default: 0)axis
: The axis to fill (default: -1, a new inner-most axis).dtype
: The data type of the output tensor.name
: A name for the operation (optional).output
: The one-hot tensor.TypeError
: If dtype of either on_value
or off_value
don't match dtype
TypeError
: If dtype of on_value
and off_value
don't match one another