View source on GitHub |
Quantizes then dequantizes a tensor.
tf.quantization.quantize_and_dequantize(
input, input_min, input_max, signed_input=True, num_bits=8, range_given=False,
round_mode='HALF_TO_EVEN', name=None, narrow_range=False, axis=None
)
input
: A Tensor
to quantize and dequantize.input_min
: If range_given=True, the minimum input value, that needs to be
represented in the quantized representation. If axis is specified, this
should be a vector of minimum values for each slice along axis.input_max
: If range_given=True, the maximum input value that needs to be
represented in the quantized representation. If axis is specified, this
should be a vector of maximum values for each slice along axis.signed_input
: True if the quantization is signed or unsigned.num_bits
: The bitwidth of the quantization.range_given
: If true use input_min
and input_max
for the range of the
input, otherwise determine min and max from the input Tensor
.round_mode
: Rounding mode when rounding from float values to quantized ones.
one of ['HALF_TO_EVEN', 'HALF_UP']name
: Optional name for the operation.narrow_range
: If true, then the absolute value of the quantized minimum
value is the same as the quantized maximum value, instead of 1 greater.
i.e. for 8 bit quantization, the minimum value is -127 instead of -128.axis
: Integer. If specified, refers to a dimension of the input tensor, such
that quantization will be per slice along that dimension.A Tensor
. Each element is the result of quantizing and dequantizing the
corresponding element of input
.