View source on GitHub |
Applies a boolean mask to data
without flattening the mask dimensions.
tf.ragged.boolean_mask(
data, mask, name=None
)
Returns a potentially ragged tensor that is formed by retaining the elements
in data
where the corresponding value in mask
is True
.
output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]
Where j
is the i
th True
entry of mask[a1...aA]
.
Note that output
preserves the mask dimensions a1...aA
; this differs
from tf.boolean_mask
, which flattens those dimensions.
data
: A potentially ragged tensor.mask
: A potentially ragged boolean tensor. mask
's shape must be a prefix
of data
's shape. rank(mask)
must be known statically.name
: A name prefix for the returned tensor (optional).A potentially ragged tensor that is formed by retaining the elements in
data
where the corresponding value in mask
is True
.
rank(output) = rank(data)
.output.ragged_rank = max(data.ragged_rank, rank(mask) - 1)
.ValueError
: if rank(mask)
is not known statically; or if mask.shape
is
not a prefix of data.shape
.>>> # Aliases for True & False so data and mask line up.
>>> T, F = (True, False)
>>> tf.ragged.boolean_mask( # Mask a 2D Tensor.
... data=[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
... mask=[[T, F, T], [F, F, F], [T, F, F]]).to_list()
[[1, 3], [], [7]]
>>> tf.ragged.boolean_mask( # Mask a 2D RaggedTensor.
... tf.ragged.constant([[1, 2, 3], [4], [5, 6]]),
... tf.ragged.constant([[F, F, T], [F], [T, T]])).to_list()
[[3], [], [5, 6]]
>>> tf.ragged.boolean_mask( # Mask rows of a 2D RaggedTensor.
... tf.ragged.constant([[1, 2, 3], [4], [5, 6]]),
... tf.ragged.constant([True, False, True])).to_list()
[[1, 2, 3], [5, 6]]