View source on GitHub |
Constructs a constant RaggedTensor from a nested Python list.
tf.ragged.constant(
pylist, dtype=None, ragged_rank=None, inner_shape=None, name=None,
row_splits_dtype=tf.dtypes.int64
)
>>> tf.ragged.constant([[1, 2], [3], [4, 5, 6]])
<tf.RaggedTensor [[1, 2], [3], [4, 5, 6]]>
All scalar values in pylist
must have the same nesting depth K
, and the
returned RaggedTensor
will have rank K
. If pylist
contains no scalar
values, then K
is one greater than the maximum depth of empty lists in
pylist
. All scalar values in pylist
must be compatible with dtype
.
pylist
: A nested list
, tuple
or np.ndarray
. Any nested element that
is not a list
, tuple
or np.ndarray
must be a scalar value
compatible with dtype
.dtype
: The type of elements for the returned RaggedTensor
. If not
specified, then a default is chosen based on the scalar values in
pylist
.ragged_rank
: An integer specifying the ragged rank of the returned
RaggedTensor
. Must be nonnegative and less than K
. Defaults to
max(0, K - 1)
if inner_shape
is not specified. Defaults to `max(0, K
if
inner_shape` is specified.inner_shape
: A tuple of integers specifying the shape for individual inner
values in the returned RaggedTensor
. Defaults to ()
if ragged_rank
is not specified. If ragged_rank
is specified, then a default is chosen
based on the contents of pylist
.name
: A name prefix for the returned tensor (optional).row_splits_dtype
: data type for the constructed RaggedTensor
's row_splits.
One of tf.int32
or tf.int64
.A potentially ragged tensor with rank K
and the specified ragged_rank
,
containing the values from pylist
.
ValueError
: If the scalar values in pylist
have inconsistent nesting
depth; or if ragged_rank or inner_shape are incompatible with pylist
.