View source on GitHub
|
Applies op to the values of one or more RaggedTensors.
tf.ragged.map_flat_values(
op, *args, **kwargs
)
Replaces any RaggedTensor in args or kwargs with its flat_values
tensor, and then calls op. Returns a RaggedTensor that is constructed
from the input RaggedTensors' nested_row_splits and the value returned by
the op.
If the input arguments contain multiple RaggedTensors, then they must have
identical nested_row_splits.
>>> rt = tf.ragged.constant([[1, 2, 3], [], [4, 5], [6]])
>>> map_flat_values(tf.ones_like, rt).to_list()
[[1, 1, 1], [], [1, 1], [1]]
>>> map_flat_values(tf.multiply, rt, rt).to_list()
[[1, 4, 9], [], [16, 25], [36]]
>>> map_flat_values(tf.add, rt, 5).to_list()
[[6, 7, 8], [], [9, 10], [11]]
op: The operation that should be applied to the RaggedTensor flat_values.
op is typically an element-wise operation (such as math_ops.add), but
any operation that preserves the size of the outermost dimension can be
used. I.e., shape[0] of the value returned by op must match
shape[0] of the RaggedTensors' flat_values tensors.*args: Arguments for op.**kwargs: Keyword arguments for op.A RaggedTensor whose ragged_rank matches the ragged_rank of all
input RaggedTensors.
ValueError: If args contains no RaggedTensors, or if the nested_splits
of the input RaggedTensors are not identical.