View source on GitHub
|
Initializer that generates tensors with a normal distribution.
Inherits From: Initializer
tf.random_normal_initializer(
mean=0.0, stddev=0.05, seed=None
)
mean: a python scalar or a scalar tensor. Mean of the random values
to generate.stddev: a python scalar or a scalar tensor. Standard deviation of the
random values to generate.seed: A Python integer. Used to create random seeds. See
tf.compat.v1.set_random_seed
for behavior.__call____call__(
shape, dtype=tf.dtypes.float32
)
Returns a tensor object initialized as specified by the initializer.
shape: Shape of the tensor.dtype: Optional dtype of the tensor. Only floating point types are
supported.ValueError: If the dtype is not floating pointfrom_config@classmethod
from_config(
config
)
Instantiates an initializer from a configuration dictionary.
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
config: A Python dictionary.
It will typically be the output of get_config.An Initializer instance.
get_configget_config()
Returns the configuration of the initializer as a JSON-serializable dict.
A JSON-serializable Python dict.