View source on GitHub |
Initializer that generates tensors with a uniform distribution.
Inherits From: Initializer
tf.random_uniform_initializer(
minval=-0.05, maxval=0.05, seed=None
)
minval
: A python scalar or a scalar tensor. Lower bound of the range
of random values to generate.maxval
: A python scalar or a scalar tensor. Upper bound of the range
of random values to generate. Defaults to 1 for float types.seed
: A Python integer. Used to create random seeds. See
tf.compat.v1.set_random_seed
for behavior.__call__
__call__(
shape, dtype=tf.dtypes.float32
)
Returns a tensor object initialized as specified by the initializer.
shape
: Shape of the tensor.dtype
: Optional dtype of the tensor. Only floating point and integer
types are supported.ValueError
: If the dtype is not numeric.from_config
@classmethod
from_config(
config
)
Instantiates an initializer from a configuration dictionary.
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
config
: A Python dictionary.
It will typically be the output of get_config
.An Initializer instance.
get_config
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
A JSON-serializable Python dict.