View source on GitHub |
Returns a mask tensor representing the first N positions of each cell.
tf.sequence_mask(
lengths, maxlen=None, dtype=tf.dtypes.bool, name=None
)
If lengths
has shape [d_1, d_2, ..., d_n]
the resulting tensor mask
has
dtype dtype
and shape [d_1, d_2, ..., d_n, maxlen]
, with
mask[i_1, i_2, ..., i_n, j] = (j < lengths[i_1, i_2, ..., i_n])
tf.sequence_mask([1, 3, 2], 5) # [[True, False, False, False, False],
# [True, True, True, False, False],
# [True, True, False, False, False]]
tf.sequence_mask([[1, 3],[2,0]]) # [[[True, False, False],
# [True, True, True]],
# [[True, True, False],
# [False, False, False]]]
lengths
: integer tensor, all its values <= maxlen.maxlen
: scalar integer tensor, size of last dimension of returned tensor.
Default is the maximum value in lengths
.dtype
: output type of the resulting tensor.name
: name of the op.A mask tensor of shape lengths.shape + (maxlen,)
, cast to specified dtype.
ValueError
: if maxlen
is not a scalar.