View source on GitHub |
Compute set difference of elements in last dimension of a
and b
.
tf.sets.difference(
a, b, aminusb=True, validate_indices=True
)
All but the last dimension of a
and b
must match.
import tensorflow as tf
import collections
# Represent the following array of sets as a sparse tensor:
# a = np.array([[{1, 2}, {3}], [{4}, {5, 6}]])
a = collections.OrderedDict([
((0, 0, 0), 1),
((0, 0, 1), 2),
((0, 1, 0), 3),
((1, 0, 0), 4),
((1, 1, 0), 5),
((1, 1, 1), 6),
])
a = tf.SparseTensor(list(a.keys()), list(a.values()), dense_shape=[2, 2, 2])
# np.array([[{1, 3}, {2}], [{4, 5}, {5, 6, 7, 8}]])
b = collections.OrderedDict([
((0, 0, 0), 1),
((0, 0, 1), 3),
((0, 1, 0), 2),
((1, 0, 0), 4),
((1, 0, 1), 5),
((1, 1, 0), 5),
((1, 1, 1), 6),
((1, 1, 2), 7),
((1, 1, 3), 8),
])
b = tf.SparseTensor(list(b.keys()), list(b.values()), dense_shape=[2, 2, 4])
# `set_difference` is applied to each aligned pair of sets.
tf.sets.difference(a, b)
# The result will be equivalent to either of:
#
# np.array([[{2}, {3}], [{}, {}]])
#
# collections.OrderedDict([
# ((0, 0, 0), 2),
# ((0, 1, 0), 3),
# ])
a
: Tensor
or SparseTensor
of the same type as b
. If sparse, indices
must be sorted in row-major order.b
: Tensor
or SparseTensor
of the same type as a
. If sparse, indices
must be sorted in row-major order.aminusb
: Whether to subtract b
from a
, vs vice versa.validate_indices
: Whether to validate the order and range of sparse indices
in a
and b
.A SparseTensor
whose shape is the same rank as a
and b
, and all but
the last dimension the same. Elements along the last dimension contain the
differences.
TypeError
: If inputs are invalid types, or if a
and b
have
different types.ValueError
: If a
is sparse and b
is dense.errors_impl.InvalidArgumentError
: If the shapes of a
and b
do not
match in any dimension other than the last dimension.