View source on GitHub
|
Stacks a list of rank-R tensors into one rank-(R+1) tensor.
tf.stack(
values, axis=0, name='stack'
)
Packs the list of tensors in values into a tensor with rank one higher than
each tensor in values, by packing them along the axis dimension.
Given a list of length N of tensors of shape (A, B, C);
if axis == 0 then the output tensor will have the shape (N, A, B, C).
if axis == 1 then the output tensor will have the shape (A, N, B, C).
Etc.
>>> x = tf.constant([1, 4])
>>> y = tf.constant([2, 5])
>>> z = tf.constant([3, 6])
>>> tf.stack([x, y, z])
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
array([[1, 4],
[2, 5],
[3, 6]], dtype=int32)>
tf.stack([x, y, z], axis=1)
This is the opposite of unstack. The numpy equivalent is np.stack
>>> np.array_equal(np.stack([x, y, z]), tf.stack([x, y, z]))
True
values: A list of Tensor objects with the same shape and type.axis: An int. The axis to stack along. Defaults to the first dimension.
Negative values wrap around, so the valid range is [-(R+1), R+1).name: A name for this operation (optional).output: A stacked Tensor with the same type as values.ValueError: If axis is out of the range [-(R+1), R+1).