View source on GitHub |
Stacks a list of rank-R
tensors into one rank-(R+1)
tensor.
tf.stack(
values, axis=0, name='stack'
)
Packs the list of tensors in values
into a tensor with rank one higher than
each tensor in values
, by packing them along the axis
dimension.
Given a list of length N
of tensors of shape (A, B, C)
;
if axis == 0
then the output
tensor will have the shape (N, A, B, C)
.
if axis == 1
then the output
tensor will have the shape (A, N, B, C)
.
Etc.
>>> x = tf.constant([1, 4])
>>> y = tf.constant([2, 5])
>>> z = tf.constant([3, 6])
>>> tf.stack([x, y, z])
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
array([[1, 4],
[2, 5],
[3, 6]], dtype=int32)>
tf.stack([x, y, z], axis=1)
This is the opposite of unstack. The numpy equivalent is np.stack
>>> np.array_equal(np.stack([x, y, z]), tf.stack([x, y, z]))
True
values
: A list of Tensor
objects with the same shape and type.axis
: An int
. The axis to stack along. Defaults to the first dimension.
Negative values wrap around, so the valid range is [-(R+1), R+1)
.name
: A name for this operation (optional).output
: A stacked Tensor
with the same type as values
.ValueError
: If axis
is out of the range [-(R+1), R+1).