View source on GitHub |
Decodes each string in input
into a sequence of Unicode code points.
tf.strings.unicode_decode(
input, input_encoding, errors='replace', replacement_char=65533,
replace_control_characters=False, name=None
)
result[i1...iN, j]
is the Unicode codepoint for the j
th character in
input[i1...iN]
, when decoded using input_encoding
.
input
: An N
dimensional potentially ragged string
tensor with shape
[D1...DN]
. N
must be statically known.input_encoding
: String name for the unicode encoding that should be used to
decode each string.errors
: Specifies the response when an input string can't be converted
using the indicated encoding. One of:
'strict'
: Raise an exception for any illegal substrings.'replace'
: Replace illegal substrings with replacement_char
.'ignore'
: Skip illegal substrings.replacement_char
: The replacement codepoint to be used in place of invalid
substrings in input
when errors='replace'
; and in place of C0 control
characters in input
when replace_control_characters=True
.replace_control_characters
: Whether to replace the C0 control characters
(U+0000 - U+001F)
with the replacement_char
.name
: A name for the operation (optional).A N+1
dimensional int32
tensor with shape [D1...DN, (num_chars)]
.
The returned tensor is a tf.Tensor
if input
is a scalar, or a
tf.RaggedTensor
otherwise.
>>> input = [s.encode('utf8') for s in (u'G\xf6\xf6dnight', u'\U0001f60a')]
>>> tf.strings.unicode_decode(input, 'UTF-8').to_list()
[[71, 246, 246, 100, 110, 105, 103, 104, 116], [128522]]