View source on GitHub |
Decodes each string into a sequence of code points with start offsets.
tf.strings.unicode_decode_with_offsets(
input, input_encoding, errors='replace', replacement_char=65533,
replace_control_characters=False, name=None
)
This op is similar to tf.strings.decode(...)
, but it also returns the
start offset for each character in its respective string. This information
can be used to align the characters with the original byte sequence.
Returns a tuple (codepoints, start_offsets)
where:
codepoints[i1...iN, j]
is the Unicode codepoint for the j
th character
in input[i1...iN]
, when decoded using input_encoding
.start_offsets[i1...iN, j]
is the start byte offset for the j
th
character in input[i1...iN]
, when decoded using input_encoding
.input
: An N
dimensional potentially ragged string
tensor with shape
[D1...DN]
. N
must be statically known.input_encoding
: String name for the unicode encoding that should be used to
decode each string.errors
: Specifies the response when an input string can't be converted
using the indicated encoding. One of:
'strict'
: Raise an exception for any illegal substrings.'replace'
: Replace illegal substrings with replacement_char
.'ignore'
: Skip illegal substrings.replacement_char
: The replacement codepoint to be used in place of invalid
substrings in input
when errors='replace'
; and in place of C0 control
characters in input
when replace_control_characters=True
.replace_control_characters
: Whether to replace the C0 control characters
(U+0000 - U+001F)
with the replacement_char
.name
: A name for the operation (optional).A tuple of N+1
dimensional tensors (codepoints, start_offsets)
.
codepoints
is an int32
tensor with shape [D1...DN, (num_chars)]
.offsets
is an int64
tensor with shape [D1...DN, (num_chars)]
.The returned tensors are tf.Tensor
s if input
is a scalar, or
tf.RaggedTensor
s otherwise.
>>> input = [s.encode('utf8') for s in (u'G\xf6\xf6dnight', u'\U0001f60a')]
>>> result = tf.strings.unicode_decode_with_offsets(input, 'UTF-8')
>>> result[0].to_list() # codepoints
[[71, 246, 246, 100, 110, 105, 103, 104, 116], [128522]]
>>> result[1].to_list() # offsets
[[0, 1, 3, 5, 6, 7, 8, 9, 10], [0]]