View source on GitHub
|
Encodes each sequence of Unicode code points in input into a string.
tf.strings.unicode_encode(
input, output_encoding, errors='replace', replacement_char=65533, name=None
)
result[i1...iN] is the string formed by concatenating the Unicode
codepoints input[1...iN, :], encoded using output_encoding.
input: An N+1 dimensional potentially ragged integer tensor with shape
[D1...DN, num_chars].output_encoding: Unicode encoding that should be used to encode each
codepoint sequence. Can be "UTF-8", "UTF-16-BE", or "UTF-32-BE".errors: Specifies the response when an invalid codepoint is encountered
(optional). One of:
* 'replace': Replace invalid codepoint with the
replacement_char. (default)
* 'ignore': Skip invalid codepoints.
* 'strict': Raise an exception for any invalid codepoint.replacement_char: The replacement character codepoint to be used in place of
any invalid input when errors='replace'. Any valid unicode codepoint may
be used. The default value is the default unicode replacement character
which is 0xFFFD (U+65533).name: A name for the operation (optional).A N dimensional string tensor with shape [D1...DN].
>>> input = tf.ragged.constant(
... [[71, 246, 246, 100, 110, 105, 103, 104, 116], [128522]])
>>> print(unicode_encode(input, 'UTF-8'))
tf.Tensor([b'G\xc3\xb6\xc3\xb6dnight' b'\xf0\x9f\x98\x8a'],
shape=(2,), dtype=string)