View source on GitHub |
Encodes each sequence of Unicode code points in input
into a string.
tf.strings.unicode_encode(
input, output_encoding, errors='replace', replacement_char=65533, name=None
)
result[i1...iN]
is the string formed by concatenating the Unicode
codepoints input[1...iN, :]
, encoded using output_encoding
.
input
: An N+1
dimensional potentially ragged integer tensor with shape
[D1...DN, num_chars]
.output_encoding
: Unicode encoding that should be used to encode each
codepoint sequence. Can be "UTF-8"
, "UTF-16-BE"
, or "UTF-32-BE"
.errors
: Specifies the response when an invalid codepoint is encountered
(optional). One of:
* 'replace'
: Replace invalid codepoint with the
replacement_char
. (default)
* 'ignore'
: Skip invalid codepoints.
* 'strict'
: Raise an exception for any invalid codepoint.replacement_char
: The replacement character codepoint to be used in place of
any invalid input when errors='replace'
. Any valid unicode codepoint may
be used. The default value is the default unicode replacement character
which is 0xFFFD (U+65533).name
: A name for the operation (optional).A N
dimensional string
tensor with shape [D1...DN]
.
>>> input = tf.ragged.constant(
... [[71, 246, 246, 100, 110, 105, 103, 104, 116], [128522]])
>>> print(unicode_encode(input, 'UTF-8'))
tf.Tensor([b'G\xc3\xb6\xc3\xb6dnight' b'\xf0\x9f\x98\x8a'],
shape=(2,), dtype=string)