View source on GitHub
|
Splits each string in input into a sequence of Unicode code points.
tf.strings.unicode_split(
input, input_encoding, errors='replace', replacement_char=65533, name=None
)
result[i1...iN, j] is the substring of input[i1...iN] that encodes its
jth character, when decoded using input_encoding.
input: An N dimensional potentially ragged string tensor with shape
[D1...DN]. N must be statically known.input_encoding: String name for the unicode encoding that should be used to
decode each string.errors: Specifies the response when an input string can't be converted
using the indicated encoding. One of:
'strict': Raise an exception for any illegal substrings.'replace': Replace illegal substrings with replacement_char.'ignore': Skip illegal substrings.replacement_char: The replacement codepoint to be used in place of invalid
substrings in input when errors='replace'.name: A name for the operation (optional).A N+1 dimensional int32 tensor with shape [D1...DN, (num_chars)].
The returned tensor is a tf.Tensor if input is a scalar, or a
tf.RaggedTensor otherwise.
>>> input = [s.encode('utf8') for s in (u'G\xf6\xf6dnight', u'\U0001f60a')]
>>> tf.strings.unicode_split(input, 'UTF-8').to_list()
[[b'G', b'\xc3\xb6', b'\xc3\xb6', b'd', b'n', b'i', b'g', b'h', b't'],
[b'\xf0\x9f\x98\x8a']]