View source on GitHub
|
Splits each string into a sequence of code points with start offsets.
tf.strings.unicode_split_with_offsets(
input, input_encoding, errors='replace', replacement_char=65533, name=None
)
This op is similar to tf.strings.decode(...), but it also returns the
start offset for each character in its respective string. This information
can be used to align the characters with the original byte sequence.
Returns a tuple (chars, start_offsets) where:
chars[i1...iN, j] is the substring of input[i1...iN] that encodes its
jth character, when decoded using input_encoding.start_offsets[i1...iN, j] is the start byte offset for the jth
character in input[i1...iN], when decoded using input_encoding.input: An N dimensional potentially ragged string tensor with shape
[D1...DN]. N must be statically known.input_encoding: String name for the unicode encoding that should be used to
decode each string.errors: Specifies the response when an input string can't be converted
using the indicated encoding. One of:
'strict': Raise an exception for any illegal substrings.'replace': Replace illegal substrings with replacement_char.'ignore': Skip illegal substrings.replacement_char: The replacement codepoint to be used in place of invalid
substrings in input when errors='replace'.name: A name for the operation (optional).A tuple of N+1 dimensional tensors (codepoints, start_offsets).
codepoints is an int32 tensor with shape [D1...DN, (num_chars)].offsets is an int64 tensor with shape [D1...DN, (num_chars)].The returned tensors are tf.Tensors if input is a scalar, or
tf.RaggedTensors otherwise.
>>> input = [s.encode('utf8') for s in (u'G\xf6\xf6dnight', u'\U0001f60a')]
>>> result = tf.strings.unicode_split_with_offsets(input, 'UTF-8')
>>> result[0].to_list() # character substrings
[[b'G', b'\xc3\xb6', b'\xc3\xb6', b'd', b'n', b'i', b'g', b'h', b't'],
[b'\xf0\x9f\x98\x8a']]
>>> result[1].to_list() # offsets
[[0, 1, 3, 5, 6, 7, 8, 9, 10], [0]]