Constructs a tensor by tiling a given tensor.
tf.tile(
input, multiples, name=None
)
This operation creates a new tensor by replicating input
multiples
times.
The output tensor's i'th dimension has input.dims(i) * multiples[i]
elements,
and the values of input
are replicated multiples[i]
times along the 'i'th
dimension. For example, tiling [a b c d]
by [2]
produces
[a b c d a b c d]
.
>>> a = tf.constant([[1,2,3],[4,5,6]], tf.int32)
>>> b = tf.constant([1,2], tf.int32)
>>> tf.tile(a, b)
<tf.Tensor: shape=(2, 6), dtype=int32, numpy=
array([[1, 2, 3, 1, 2, 3],
[4, 5, 6, 4, 5, 6]], dtype=int32)>
>>> c = tf.constant([2,1], tf.int32)
>>> tf.tile(a, c)
<tf.Tensor: shape=(4, 3), dtype=int32, numpy=
array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3],
[4, 5, 6]], dtype=int32)>
>>> d = tf.constant([2,2], tf.int32)
>>> tf.tile(a, d)
<tf.Tensor: shape=(4, 6), dtype=int32, numpy=
array([[1, 2, 3, 1, 2, 3],
[4, 5, 6, 4, 5, 6],
[1, 2, 3, 1, 2, 3],
[4, 5, 6, 4, 5, 6]], dtype=int32)>
input
: A Tensor
. 1-D or higher.multiples
: A Tensor
. Must be one of the following types: int32
, int64
.
1-D. Length must be the same as the number of dimensions in input
name
: A name for the operation (optional).A Tensor
. Has the same type as input
.