Quantile Transform¶
The quantile transform calculates empirical quantile values for input data. If a groupby parameter is provided, quantiles are estimated separately per group. Among other uses, the quantile transform is useful for creating quantile-quantile (Q-Q) plots.
Here is an example of a quantile plot of normally-distributed data:
import altair as alt
import pandas as pd
import numpy as np
np.random.seed(42)
df = pd.DataFrame({'x': np.random.randn(200)})
alt.Chart(df).transform_quantile(
    'x', step=0.01
).mark_point().encode(
    x='prob:Q',
    y='value:Q'
)
Transform Options¶
The transform_quantile() method is built on the QuantileTransform
class, which has the following options:
Property  | 
Type  | 
Description  | 
|---|---|---|
as  | 
array(any)  | 
The output field names for the probability and quantile values. Default value:   | 
groupby  | 
array(  | 
The data fields to group by. If not specified, a single group containing all data objects will be used.  | 
probs  | 
array(  | 
An array of probabilities in the range (0, 1) for which to compute quantile values. If not specified, the step parameter will be used.  | 
quantile  | 
The data field for which to perform quantile estimation.  | 
|
step  | 
  | 
A probability step size (default 0.01) for sampling quantile values. All values from one-half the step size up to 1 (exclusive) will be sampled. This parameter is only used if the probs parameter is not provided.  |