Quantile Transform¶
The quantile transform calculates empirical quantile values for input data. If a groupby parameter is provided, quantiles are estimated separately per group. Among other uses, the quantile transform is useful for creating quantile-quantile (Q-Q) plots.
Here is an example of a quantile plot of normally-distributed data:
import altair as alt
import pandas as pd
import numpy as np
np.random.seed(42)
df = pd.DataFrame({'x': np.random.randn(200)})
alt.Chart(df).transform_quantile(
'x', step=0.01
).mark_point().encode(
x='prob:Q',
y='value:Q'
)
Transform Options¶
The transform_quantile()
method is built on the QuantileTransform
class, which has the following options:
Property |
Type |
Description |
---|---|---|
as |
array(any) |
The output field names for the probability and quantile values. Default value: |
groupby |
array( |
The data fields to group by. If not specified, a single group containing all data objects will be used. |
probs |
array( |
An array of probabilities in the range (0, 1) for which to compute quantile values. If not specified, the step parameter will be used. |
quantile |
The data field for which to perform quantile estimation. |
|
step |
|
A probability step size (default 0.01) for sampling quantile values. All values from one-half the step size up to 1 (exclusive) will be sampled. This parameter is only used if the probs parameter is not provided. |