In this example we show how to do portfolio optimization using CVXPY. We begin with the basic definitions. In portfolio optimization we have some amount of money to invest in any of n different assets. We choose what fraction wi of our money to invest in each asset i, i=1,…,n.
We call w∈Rn the portfolio allocation vector. We of course have the constraint that 1Tw=1. The allocation wi<0 means a short position in asset i, or that we borrow shares to sell now that we must replace later. The allocation w≥0 is a long only portfolio. The quantity ‖w‖1=1Tw++1Tw− is known as leverage.
We will only model investments held for one period. The initial prices are pi>0. The end of period prices are p+i>0. The asset (fractional) returns are ri=(p+i−pi)/pi. The porfolio (fractional) return is R=rTw.
A common model is that r is a random variable with mean Er=μ and covariance E(r−μ)(r−μ)T=Σ. It follows that R is a random variable with ER=μTw and var(R)=wTΣw. ER is the (mean) return of the portfolio. var(R) is the risk of the portfolio. (Risk is also sometimes given as std(R)=√var(R).)
Portfolio optimization has two competing objectives: high return and low risk.
Classical (Markowitz) portfolio optimization solves the optimization problem
maximizeμTw−γwTΣwsubject to1Tw=1,w∈W,where w∈Rn is the optimization variable, W is a set of allowed portfolios (e.g., W=Rn+ for a long only portfolio), and γ>0 is the risk aversion parameter.
The objective μTw−γwTΣw is the risk-adjusted return. Varying γ gives the optimal risk-return trade-off. We can get the same risk-return trade-off by fixing return and minimizing risk.
In the following code we compute and plot the optimal risk-return trade-off for 10 assets, restricting ourselves to a long only portfolio.
# Generate data for long only portfolio optimization.
import numpy as np
np.random.seed(1)
n = 10
mu = np.abs(np.random.randn(n, 1))
Sigma = np.random.randn(n, n)
Sigma = Sigma.T.dot(Sigma)
# Long only portfolio optimization.
from cvxpy import *
w = Variable(n)
gamma = Parameter(sign='positive')
ret = mu.T*w
risk = quad_form(w, Sigma)
prob = Problem(Maximize(ret - gamma*risk),
[sum_entries(w) == 1,
w >= 0])
# Compute trade-off curve.
SAMPLES = 100
risk_data = np.zeros(SAMPLES)
ret_data = np.zeros(SAMPLES)
gamma_vals = np.logspace(-2, 3, num=SAMPLES)
for i in range(SAMPLES):
gamma.value = gamma_vals[i]
prob.solve()
risk_data[i] = sqrt(risk).value
ret_data[i] = ret.value
# Plot long only trade-off curve.
import matplotlib.pyplot as plt
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
markers_on = [29, 40]
fig = plt.figure()
ax = fig.add_subplot(111)
plt.plot(risk_data, ret_data, 'g-')
for marker in markers_on:
plt.plot(risk_data[marker], ret_data[marker], 'bs')
ax.annotate(r"$\gamma = %.2f$" % gamma_vals[marker], xy=(risk_data[marker]+.08, ret_data[marker]-.03))
for i in range(n):
plt.plot(sqrt(Sigma[i,i]).value, mu[i], 'ro')
plt.xlabel('Standard deviation')
plt.ylabel('Return')
plt.show()
We plot below the return distributions for the two risk aversion values marked on the trade-off curve. Notice that the probability of a loss is near 0 for the low risk value and far above 0 for the high risk value.
# Plot return distributions for two points on the trade-off curve.
import matplotlib.mlab as mlab
plt.figure()
for midx, idx in enumerate(markers_on):
gamma.value = gamma_vals[idx]
prob.solve()
x = np.linspace(-2, 5, 1000)
plt.plot(x, mlab.normpdf(x, ret.value, risk.value), label=r"$\gamma = %.2f$" % gamma.value)
plt.xlabel('Return')
plt.ylabel('Density')
plt.legend(loc='upper right')
plt.show()
There are many other possible portfolio constraints besides the long only constraint. With no constraint (W=Rn), the optimization problem has a simple analytical solution. We will look in detail at a leverage limit, or the constraint that ‖w‖1≤Lmax.
Another interesting constraint is the market neutral constraint mTΣw=0, where mi is the capitalization of asset i. M=mTr is the market return, and mTΣw=cov(M,R). The market neutral constraint ensures that the portfolio return is uncorrelated with the market return.
In the following code we compute and plot optimal risk-return trade-off curves for leverage limits of 1, 2, and 4. Notice that more leverage increases returns and allows greater risk.
# Portfolio optimization with leverage limit.
Lmax = Parameter()
prob = Problem(Maximize(ret - gamma*risk),
[sum_entries(w) == 1,
norm(w, 1) <= Lmax])
# Compute trade-off curve for each leverage limit.
L_vals = [1, 2, 4]
SAMPLES = 100
risk_data = np.zeros((len(L_vals), SAMPLES))
ret_data = np.zeros((len(L_vals), SAMPLES))
gamma_vals = np.logspace(-2, 3, num=SAMPLES)
w_vals = []
for k, L_val in enumerate(L_vals):
for i in range(SAMPLES):
Lmax.value = L_val
gamma.value = gamma_vals[i]
prob.solve()
risk_data[k, i] = sqrt(risk).value
ret_data[k, i] = ret.value
# Plot trade-off curves for each leverage limit.
for idx, L_val in enumerate(L_vals):
plt.plot(risk_data[idx,:], ret_data[idx,:], label=r"$L^{\max}$ = %d" % L_val)
for w_val in w_vals:
w.value = w_val
plt.plot(sqrt(risk).value, ret.value, 'bs')
plt.xlabel('Standard deviation')
plt.ylabel('Return')
plt.legend(loc='lower right')
plt.show()
We next examine the points on each trade-off curve where wTΣw=2. We plot the amount of each asset held in each portfolio as bar graphs. (Negative holdings indicate a short position.) Notice that some assets are held in a long position for the low leverage portfolio but in a short position in the higher leverage portfolios.
# Portfolio optimization with a leverage limit and a bound on risk.
prob = Problem(Maximize(ret),
[sum_entries(w) == 1,
norm(w, 1) <= Lmax,
risk <= 2])
# Compute solution for different leverage limits.
for k, L_val in enumerate(L_vals):
Lmax.value = L_val
prob.solve()
w_vals.append( w.value )
# Plot bar graph of holdings for different leverage limits.
colors = ['b', 'g', 'r']
indices = np.argsort(mu.flatten())
for idx, L_val in enumerate(L_vals):
plt.bar(np.arange(1,n+1) + 0.25*idx - 0.375, w_vals[idx][indices], color=colors[idx],
label=r"$L^{\max}$ = %d" % L_val, width = 0.25)
plt.ylabel(r"$w_i$", fontsize=16)
plt.xlabel(r"$i$", fontsize=16)
plt.xlim([1-0.375, 10+.375])
plt.xticks(np.arange(1,n+1))
plt.show()
There are many more variations of classical portfolio optimization. We might require that μTw≥Rmin and minimize wTΣw or ‖Σ1/2w‖2. We could include the (broker) cost of short positions as the penalty sT(w)− for some s≥0. We could include transaction costs (from a previous portfolio wprev) as the penalty
κT|w−wprev|η,κ≥0.Common values of η are η=1, 3/2, 2.
A particularly common and useful variation is to model the covariance matrix Σ as a factor model
Σ=F˜ΣFT+D,where F∈Rn×k, k≪n is the factor loading matrix. k is the number of factors (or sectors) (typically 10s). Fij is the loading of asset i to factor j. D is a diagonal matrix; Dii>0 is the idiosyncratic risk. ˜Σ>0 is the factor covariance matrix.
FTw∈Rk gives the portfolio factor exposures. A portfolio is factor j neutral if (FTw)j=0.
Using the factor covariance model, we frame the portfolio optimization problem as
maximizeμTw−γ(fT˜Σf+wTDw)subject to1Tw=1,f=FTww∈W,f∈F,where the variables are the allocations w∈Rn and factor exposures f∈Rk and F gives the factor exposure constraints.
Using the factor covariance model in the optimization problem has a computational advantage. The solve time is O(nk2) versus O(n3) for the standard problem.
In the following code we generate and solve a portfolio optimization problem with 50 factors and 3000 assets. We set the leverage limit =2 and γ=0.1.
We solve the problem both with the covariance given as a single matrix and as a factor model. Using CVXPY with the ECOS solver running in a single thread, the solve time was 687.26 seconds for the single matrix formulation and 0.58 seconds for the factor model formulation. We collected the timings on a MacBook Pro with an Intel Core i7 processor.
# Generate data for factor model.
n = 3000
m = 50
np.random.seed(1)
mu = np.abs(np.random.randn(n, 1))
Sigma_tilde = np.random.randn(m, m)
Sigma_tilde = Sigma_tilde.T.dot(Sigma_tilde)
D = np.diag(np.random.uniform(0, 0.9, size=n))
F = np.random.randn(n, m)
# Factor model portfolio optimization.
w = Variable(n)
f = F.T*w
gamma = Parameter(sign='positive')
Lmax = Parameter()
ret = mu.T*w
risk = quad_form(f, Sigma_tilde) + quad_form(w, D)
prob_factor = Problem(Maximize(ret - gamma*risk),
[sum_entries(w) == 1,
norm(w, 1) <= Lmax])
# Solve the factor model problem.
Lmax.value = 2
gamma.value = 0.1
prob_factor.solve(verbose=True)
# Standard portfolio optimization with data from factor model.
risk = quad_form(w, F.dot(Sigma_tilde).dot(F.T) + D)
prob = Problem(Maximize(ret - gamma*risk),
[sum_entries(w) == 1,
norm(w, 1) <= Lmax])
# Uncomment to solve the problem.
# WARNING: this will take many minutes to run.
# prob.solve(verbose=True)