Shortcuts

Source code for torchaudio

import os.path

import torch

from torchaudio import (
    compliance,
    datasets,
    kaldi_io,
    sox_effects,
    transforms,
)

from torchaudio._backend import (
    check_input,
    _audio_backend_guard,
    _get_audio_backend_module,
    get_audio_backend,
    set_audio_backend,
)

try:
    from .version import __version__, git_version  # noqa: F401
except ImportError:
    pass


[docs]def load(filepath, out=None, normalization=True, channels_first=True, num_frames=0, offset=0, signalinfo=None, encodinginfo=None, filetype=None): r"""Loads an audio file from disk into a tensor Args: filepath (str or pathlib.Path): Path to audio file out (torch.Tensor, optional): An output tensor to use instead of creating one. (Default: ``None``) normalization (bool, number, or callable, optional): If boolean `True`, then output is divided by `1 << 31` (assumes signed 32-bit audio), and normalizes to `[-1, 1]`. If `number`, then output is divided by that number If `callable`, then the output is passed as a parameter to the given function, then the output is divided by the result. (Default: ``True``) channels_first (bool): Set channels first or length first in result. (Default: ``True``) num_frames (int, optional): Number of frames to load. 0 to load everything after the offset. (Default: ``0``) offset (int, optional): Number of frames from the start of the file to begin data loading. (Default: ``0``) signalinfo (sox_signalinfo_t, optional): A sox_signalinfo_t type, which could be helpful if the audio type cannot be automatically determined. (Default: ``None``) encodinginfo (sox_encodinginfo_t, optional): A sox_encodinginfo_t type, which could be set if the audio type cannot be automatically determined. (Default: ``None``) filetype (str, optional): A filetype or extension to be set if sox cannot determine it automatically. (Default: ``None``) Returns: Tuple[torch.Tensor, int]: An output tensor of size `[C x L]` or `[L x C]` where L is the number of audio frames and C is the number of channels. An integer which is the sample rate of the audio (as listed in the metadata of the file) Example >>> data, sample_rate = torchaudio.load('foo.mp3') >>> print(data.size()) torch.Size([2, 278756]) >>> print(sample_rate) 44100 >>> data_vol_normalized, _ = torchaudio.load('foo.mp3', normalization=lambda x: torch.abs(x).max()) >>> print(data_vol_normalized.abs().max()) 1. """ return _get_audio_backend_module().load( filepath, out=out, normalization=normalization, channels_first=channels_first, num_frames=num_frames, offset=offset, signalinfo=signalinfo, encodinginfo=encodinginfo, filetype=filetype, )
[docs]def load_wav(filepath, **kwargs): r""" Loads a wave file. It assumes that the wav file uses 16 bit per sample that needs normalization by shifting the input right by 16 bits. Args: filepath (str or pathlib.Path): Path to audio file Returns: Tuple[torch.Tensor, int]: An output tensor of size `[C x L]` or `[L x C]` where L is the number of audio frames and C is the number of channels. An integer which is the sample rate of the audio (as listed in the metadata of the file) """ kwargs['normalization'] = 1 << 16 return load(filepath, **kwargs)
[docs]def save(filepath, src, sample_rate, precision=16, channels_first=True): r"""Convenience function for `save_encinfo`. Args: filepath (str): Path to audio file src (torch.Tensor): An input 2D tensor of shape `[C x L]` or `[L x C]` where L is the number of audio frames, C is the number of channels sample_rate (int): An integer which is the sample rate of the audio (as listed in the metadata of the file) precision (int): Bit precision (Default: ``16``) channels_first (bool): Set channels first or length first in result. ( Default: ``True``) """ return _get_audio_backend_module().save( filepath, src, sample_rate, precision=precision, channels_first=channels_first )
[docs]@_audio_backend_guard("sox") def save_encinfo(filepath, src, channels_first=True, signalinfo=None, encodinginfo=None, filetype=None): r"""Saves a tensor of an audio signal to disk as a standard format like mp3, wav, etc. Args: filepath (str): Path to audio file src (torch.Tensor): An input 2D tensor of shape `[C x L]` or `[L x C]` where L is the number of audio frames, C is the number of channels channels_first (bool): Set channels first or length first in result. (Default: ``True``) signalinfo (sox_signalinfo_t): A sox_signalinfo_t type, which could be helpful if the audio type cannot be automatically determined. (Default: ``None``) encodinginfo (sox_encodinginfo_t, optional): A sox_encodinginfo_t type, which could be set if the audio type cannot be automatically determined. (Default: ``None``) filetype (str, optional): A filetype or extension to be set if sox cannot determine it automatically. (Default: ``None``) Example >>> data, sample_rate = torchaudio.load('foo.mp3') >>> torchaudio.save('foo.wav', data, sample_rate) """ ch_idx, len_idx = (0, 1) if channels_first else (1, 0) # check if save directory exists abs_dirpath = os.path.dirname(os.path.abspath(filepath)) if not os.path.isdir(abs_dirpath): raise OSError("Directory does not exist: {}".format(abs_dirpath)) # check that src is a CPU tensor check_input(src) # Check/Fix shape of source data if src.dim() == 1: # 1d tensors as assumed to be mono signals src.unsqueeze_(ch_idx) elif src.dim() > 2 or src.size(ch_idx) > 16: # assumes num_channels < 16 raise ValueError( "Expected format where C < 16, but found {}".format(src.size())) # sox stores the sample rate as a float, though practically sample rates are almost always integers # convert integers to floats if not isinstance(signalinfo.rate, float): if float(signalinfo.rate) == signalinfo.rate: signalinfo.rate = float(signalinfo.rate) else: raise TypeError('Sample rate should be a float or int') # check if the bit precision (i.e. bits per sample) is an integer if not isinstance(signalinfo.precision, int): if int(signalinfo.precision) == signalinfo.precision: signalinfo.precision = int(signalinfo.precision) else: raise TypeError('Bit precision should be an integer') # programs such as librosa normalize the signal, unnormalize if detected if src.min() >= -1.0 and src.max() <= 1.0: src = src * (1 << 31) src = src.long() # set filetype and allow for files with no extensions extension = os.path.splitext(filepath)[1] filetype = extension[1:] if len(extension) > 0 else filetype # transpose from C x L -> L x C if channels_first: src = src.transpose(1, 0) # save data to file src = src.contiguous() import _torch_sox _torch_sox.write_audio_file(filepath, src, signalinfo, encodinginfo, filetype)
[docs]def info(filepath): r"""Gets metadata from an audio file without loading the signal. Args: filepath (str): Path to audio file Returns: Tuple[sox_signalinfo_t, sox_encodinginfo_t]: A si (sox_signalinfo_t) signal info as a python object. An ei (sox_encodinginfo_t) encoding info Example >>> si, ei = torchaudio.info('foo.wav') >>> rate, channels, encoding = si.rate, si.channels, ei.encoding """ return _get_audio_backend_module().info(filepath)
[docs]@_audio_backend_guard("sox") def sox_signalinfo_t(): r"""Create a sox_signalinfo_t object. This object can be used to set the sample rate, number of channels, length, bit precision and headroom multiplier primarily for effects Returns: sox_signalinfo_t(object) - rate (float), sample rate as a float, practically will likely be an integer float - channel (int), number of audio channels - precision (int), bit precision - length (int), length of audio in samples * channels, 0 for unspecified and -1 for unknown - mult (float, optional), headroom multiplier for effects and ``None`` for no multiplier Example >>> si = torchaudio.sox_signalinfo_t() >>> si.channels = 1 >>> si.rate = 16000. >>> si.precision = 16 >>> si.length = 0 """ import _torch_sox return _torch_sox.sox_signalinfo_t()
[docs]@_audio_backend_guard("sox") def sox_encodinginfo_t(): r"""Create a sox_encodinginfo_t object. This object can be used to set the encoding type, bit precision, compression factor, reverse bytes, reverse nibbles, reverse bits and endianness. This can be used in an effects chain to encode the final output or to save a file with a specific encoding. For example, one could use the sox ulaw encoding to do 8-bit ulaw encoding. Note in a tensor output the result will be a 32-bit number, but number of unique values will be determined by the bit precision. Returns: sox_encodinginfo_t(object) - encoding (sox_encoding_t), output encoding - bits_per_sample (int), bit precision, same as `precision` in sox_signalinfo_t - compression (float), compression for lossy formats, 0.0 for default compression - reverse_bytes (sox_option_t), reverse bytes, use sox_option_default - reverse_nibbles (sox_option_t), reverse nibbles, use sox_option_default - reverse_bits (sox_option_t), reverse bytes, use sox_option_default - opposite_endian (sox_bool), change endianness, use sox_false Example >>> ei = torchaudio.sox_encodinginfo_t() >>> ei.encoding = torchaudio.get_sox_encoding_t(1) >>> ei.bits_per_sample = 16 >>> ei.compression = 0 >>> ei.reverse_bytes = torchaudio.get_sox_option_t(2) >>> ei.reverse_nibbles = torchaudio.get_sox_option_t(2) >>> ei.reverse_bits = torchaudio.get_sox_option_t(2) >>> ei.opposite_endian = torchaudio.get_sox_bool(0) """ import _torch_sox ei = _torch_sox.sox_encodinginfo_t() sdo = get_sox_option_t(2) # sox_default_option ei.reverse_bytes = sdo ei.reverse_nibbles = sdo ei.reverse_bits = sdo return ei
[docs]@_audio_backend_guard("sox") def get_sox_encoding_t(i=None): r"""Get enum of sox_encoding_t for sox encodings. Args: i (int, optional): Choose type or get a dict with all possible options use ``__members__`` to see all options when not specified. (Default: ``None``) Returns: sox_encoding_t: A sox_encoding_t type for output encoding """ import _torch_sox if i is None: # one can see all possible values using the .__members__ attribute return _torch_sox.sox_encoding_t else: return _torch_sox.sox_encoding_t(i)
[docs]@_audio_backend_guard("sox") def get_sox_option_t(i=2): r"""Get enum of sox_option_t for sox encodinginfo options. Args: i (int, optional): Choose type or get a dict with all possible options use ``__members__`` to see all options when not specified. (Default: ``sox_option_default`` or ``2``) Returns: sox_option_t: A sox_option_t type """ import _torch_sox if i is None: return _torch_sox.sox_option_t else: return _torch_sox.sox_option_t(i)
[docs]@_audio_backend_guard("sox") def get_sox_bool(i=0): r"""Get enum of sox_bool for sox encodinginfo options. Args: i (int, optional): Choose type or get a dict with all possible options use ``__members__`` to see all options when not specified. (Default: ``sox_false`` or ``0``) Returns: sox_bool: A sox_bool type """ import _torch_sox if i is None: return _torch_sox.sox_bool else: return _torch_sox.sox_bool(i)
[docs]@_audio_backend_guard("sox") def initialize_sox(): """Initialize sox for use with effects chains. This is not required for simple loading. Importantly, only run `initialize_sox` once and do not shutdown after each effect chain, but rather once you are finished with all effects chains. """ import _torch_sox return _torch_sox.initialize_sox()
[docs]@_audio_backend_guard("sox") def shutdown_sox(): """Showdown sox for effects chain. Not required for simple loading. Importantly, only call once. Attempting to re-initialize sox will result in seg faults. """ import _torch_sox return _torch_sox.shutdown_sox()
def _audio_normalization(signal, normalization): """Audio normalization of a tensor in-place. The normalization can be a bool, a number, or a callable that takes the audio tensor as an input. SoX uses 32-bit signed integers internally, thus bool normalizes based on that assumption. """ if not normalization: return if isinstance(normalization, bool): normalization = 1 << 31 if isinstance(normalization, (float, int)): # normalize with custom value a = normalization signal /= a elif callable(normalization): a = normalization(signal) signal /= a

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources