View source on GitHub
|
Performs beam search decoding on the logits given in input.
tf.nn.ctc_beam_search_decoder(
inputs, sequence_length, beam_width=100, top_paths=1
)
Note The ctc_greedy_decoder is a special case of the
ctc_beam_search_decoder with top_paths=1 and beam_width=1 (but
that decoder is faster for this special case).
inputs: 3-D float Tensor, size [max_time, batch_size, num_classes].
The logits.sequence_length: 1-D int32 vector containing sequence lengths, having size
[batch_size].beam_width: An int scalar >= 0 (beam search beam width).top_paths: An int scalar >= 0, <= beam_width (controls output size).A tuple (decoded, log_probabilities) where
decoded: A list of length top_paths, where decoded[j]
is a SparseTensor containing the decoded outputs:
decoded[j].indices: Indices matrix [total_decoded_outputs[j], 2];
The rows store: [batch, time].
decoded[j].values: Values vector, size [total_decoded_outputs[j]].
The vector stores the decoded classes for beam j.
decoded[j].dense_shape: Shape vector, size (2).
The shape values are: [batch_size, max_decoded_length[j]].
log_probability: A float matrix [batch_size, top_paths] containing
sequence log-probabilities.