View source on GitHub
|
Constructs a constant RaggedTensor from a nested Python list.
tf.ragged.constant(
pylist, dtype=None, ragged_rank=None, inner_shape=None, name=None,
row_splits_dtype=tf.dtypes.int64
)
>>> tf.ragged.constant([[1, 2], [3], [4, 5, 6]])
<tf.RaggedTensor [[1, 2], [3], [4, 5, 6]]>
All scalar values in pylist must have the same nesting depth K, and the
returned RaggedTensor will have rank K. If pylist contains no scalar
values, then K is one greater than the maximum depth of empty lists in
pylist. All scalar values in pylist must be compatible with dtype.
pylist: A nested list, tuple or np.ndarray. Any nested element that
is not a list, tuple or np.ndarray must be a scalar value
compatible with dtype.dtype: The type of elements for the returned RaggedTensor. If not
specified, then a default is chosen based on the scalar values in
pylist.ragged_rank: An integer specifying the ragged rank of the returned
RaggedTensor. Must be nonnegative and less than K. Defaults to
max(0, K - 1) if inner_shape is not specified. Defaults to `max(0, K
ifinner_shape` is specified.inner_shape: A tuple of integers specifying the shape for individual inner
values in the returned RaggedTensor. Defaults to () if ragged_rank
is not specified. If ragged_rank is specified, then a default is chosen
based on the contents of pylist.name: A name prefix for the returned tensor (optional).row_splits_dtype: data type for the constructed RaggedTensor's row_splits.
One of tf.int32 or tf.int64.A potentially ragged tensor with rank K and the specified ragged_rank,
containing the values from pylist.
ValueError: If the scalar values in pylist have inconsistent nesting
depth; or if ragged_rank or inner_shape are incompatible with pylist.