chainer.functions.decov¶
-
chainer.functions.decov(h, reduce='half_squared_sum')[source]¶ Computes the DeCov loss of
hThe output is a variable whose value depends on the value of the option
reduce. If it is'no', it holds a matrix whose size is same as the number of columns ofy. If it is'half_squared_sum', it holds the half of the squared Frobenius norm (i.e. squared of the L2 norm of a matrix flattened to a vector) of the matrix.- Parameters
h (
Variableor N-dimensional array) – Variable holding a matrix where the first dimension corresponds to the batches.recude (str) – Reduction option. Its value must be either
'half_squared_sum'or'no'. Otherwise,ValueErroris raised.
- Returns
A variable holding a scalar of the DeCov loss. If
reduceis'no', the output variable holds 2-dimensional array matrix of shape(N, N)whereNis the number of columns ofy. If it is'half_squared_sum', the output variable holds a scalar value.- Return type
Note
See https://arxiv.org/abs/1511.06068 for details.