chainer.functions.hard_sigmoid¶
-
chainer.functions.
hard_sigmoid
(x)[source]¶ Element-wise hard-sigmoid function.
This function is defined as
\[\begin{split}f(x) = \left \{ \begin{array}{ll} 0 & {\rm if}~ x < -2.5 \\ 0.2 x + 0.5 & {\rm if}~ -2.5 < x < 2.5 \\ 1 & {\rm if}~ 2.5 < x. \end{array} \right.\end{split}\]- Parameters
x (
Variable
or N-dimensional array) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.- Returns
Output variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.
- Return type
Example
It maps the input values into the range of \([0, 1]\).
>>> x = np.array([-2.6, -1, 0, 1, 2.6]) >>> x array([-2.6, -1. , 0. , 1. , 2.6]) >>> F.hard_sigmoid(x).array array([0. , 0.3, 0.5, 0.7, 1. ])