chainer.functions.linear

chainer.functions.linear(x, W, b=None, n_batch_axes=1)[source]

Linear function, or affine transformation.

It accepts two or three arguments: an input minibatch x, a weight matrix W, and optionally a bias vector b. It computes

yi=Wxi+b.
Parameters
  • x (Variable or N-dimensional array) – Input variable, which is a (s1,s2,...,sn)-shaped float array. Its first n_batch_axes dimensions are handled as minibatch dimensions. The other dimensions are handled as concatenated one dimension whose size must be (sn_batch_axes...sn=N).

  • W (Variable or N-dimensional array) – Weight variable of shape (M,N), where (N=sn_batch_axes...sn).

  • b (Variable or N-dimensional array) – Bias variable (optional) of shape (M,).

  • n_batch_axes (int) – The number of batch axes. The default is 1. The input variable is reshaped into (n_batch_axes+1)-dimensional tensor. This should be greater than 0.

Returns

Output variable. A float array with shape of (s1,...,sn_batch_axes,M).

Return type

Variable

See also

Linear

Example

>>> x = np.random.uniform(0, 1, (3, 4)).astype(np.float32)
>>> W = np.random.uniform(0, 1, (5, 4)).astype(np.float32)
>>> b = np.random.uniform(0, 1, (5,)).astype(np.float32)
>>> y = F.linear(x, W, b)
>>> y.shape
(3, 5)