chainer.functions.max_pooling_nd¶
-
chainer.functions.
max_pooling_nd
(x, ksize, stride=None, pad=0, cover_all=True, return_indices=False)[source]¶ N-dimensionally spatial max pooling function.
Warning
This feature is experimental. The interface can change in the future.
This function provides a N-dimensionally generalized version of
max_pooling_2d()
. This acts similarly toconvolution_nd()
, but it computes the maximum of input spatial patch for each channel without any parameter instead of computing the inner products.- Parameters
x (Variable) – Input variable.
ksize (int or tuple of ints) – Size of pooling window.
ksize=k
andksize=(k, k, ..., k)
are equivalent.stride (int or tuple of ints or None) – Stride of pooling applications.
stride=s
andstride=(s,s, ..., s)
are equivalent. IfNone
is specified, then it uses same stride as the pooling window size.pad (int or tuple of ints) – Spatial padding width for the input array.
pad=p
andpad=(p, p, ..., p)
are equivalent.cover_all (bool) – If
True
, all spatial locations are pooled into some output pixels. It may make the output size larger.return_indices (bool) – If
True
, pooling indices array is returned together with the output variable. The returned indices are expected for use bychainer.functions.upsampling_nd()
. Note that cuDNN will not be used for this function ifreturn_indices
is set toTrue
, as cuDNN does not return indices information.
- Returns
When
return_indices
isFalse
(default), returns the output variable. WhenTrue
, returns the tuple of the output variable and pooling indices (ndarray). Pooling indices will be on the same device as the input.- Return type