chainer.functions.stack¶
- 
chainer.functions.stack(xs, axis=0)[source]¶
- Concatenate variables along a new axis. - Parameters
- xs (list of - Variableor N-dimensional array) – Input variables to be concatenated. The variables must have the same shape.
- axis (int) – The axis along which the arrays will be stacked. The - axisparameter is acceptable when \(-ndim - 1 \leq axis \leq ndim\). (- ndimis the dimension of input variables). When \(axis < 0\), the result is the same with \(ndim + 1 - |axis|\).
 
- Returns
- Output variable. Let - x_1, x_2, ..., x_nand- ybe the input variables and the output variable,- y[:, ..., 0, ..., :]is- x_1,- y[:, ..., 1, ..., :]is- x_2and- y[:, ..., n-1, ..., :]is- x_n(The indexed axis indicates the- axis).
- Return type
 - Example - >>> x1 = np.arange(0, 12).reshape(3, 4) >>> x1.shape (3, 4) >>> x1 array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> x2 = np.arange(12, 24).reshape(3, 4) >>> x2.shape (3, 4) >>> x2 array([[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]) >>> y = F.stack([x1, x2], axis=0) >>> y.shape (2, 3, 4) >>> y.array array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]], <BLANKLINE> [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]]) >>> y = F.stack([x1, x2], axis=1) >>> y.shape (3, 2, 4) >>> y.array array([[[ 0, 1, 2, 3], [12, 13, 14, 15]], <BLANKLINE> [[ 4, 5, 6, 7], [16, 17, 18, 19]], <BLANKLINE> [[ 8, 9, 10, 11], [20, 21, 22, 23]]]) >>> y = F.stack([x1, x2], axis=2) >>> y.shape (3, 4, 2) >>> y.array array([[[ 0, 12], [ 1, 13], [ 2, 14], [ 3, 15]], <BLANKLINE> [[ 4, 16], [ 5, 17], [ 6, 18], [ 7, 19]], <BLANKLINE> [[ 8, 20], [ 9, 21], [10, 22], [11, 23]]]) >>> y = F.stack([x1, x2], axis=-1) >>> y.shape (3, 4, 2)