FFmpeg  4.0
aacps.c
Go to the documentation of this file.
1 /*
2  * MPEG-4 Parametric Stereo decoding functions
3  * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  *
21  * Note: Rounding-to-nearest used unless otherwise stated
22  *
23  */
24 
25 #include <stdint.h>
26 #include "libavutil/common.h"
27 #include "libavutil/mathematics.h"
28 #include "avcodec.h"
29 #include "get_bits.h"
30 #include "aacps.h"
31 #if USE_FIXED
32 #include "aacps_fixed_tablegen.h"
33 #else
34 #include "libavutil/internal.h"
35 #include "aacps_tablegen.h"
36 #endif /* USE_FIXED */
37 #include "aacpsdata.c"
38 
39 #define PS_BASELINE 0 ///< Operate in Baseline PS mode
40  ///< Baseline implies 10 or 20 stereo bands,
41  ///< mixing mode A, and no ipd/opd
42 
43 #define numQMFSlots 32 //numTimeSlots * RATE
44 
45 static const int8_t num_env_tab[2][4] = {
46  { 0, 1, 2, 4, },
47  { 1, 2, 3, 4, },
48 };
49 
50 static const int8_t nr_iidicc_par_tab[] = {
51  10, 20, 34, 10, 20, 34,
52 };
53 
54 static const int8_t nr_iidopd_par_tab[] = {
55  5, 11, 17, 5, 11, 17,
56 };
57 
58 enum {
69 };
70 
71 static const int huff_iid[] = {
76 };
77 
78 static VLC vlc_ps[10];
79 
80 #define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION) \
81 /** \
82  * Read Inter-channel Intensity Difference/Inter-Channel Coherence/ \
83  * Inter-channel Phase Difference/Overall Phase Difference parameters from the \
84  * bitstream. \
85  * \
86  * @param avctx contains the current codec context \
87  * @param gb pointer to the input bitstream \
88  * @param ps pointer to the Parametric Stereo context \
89  * @param PAR pointer to the parameter to be read \
90  * @param e envelope to decode \
91  * @param dt 1: time delta-coded, 0: frequency delta-coded \
92  */ \
93 static int read_ ## PAR ## _data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, \
94  int8_t (*PAR)[PS_MAX_NR_IIDICC], int table_idx, int e, int dt) \
95 { \
96  int b, num = ps->nr_ ## PAR ## _par; \
97  VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table; \
98  if (dt) { \
99  int e_prev = e ? e - 1 : ps->num_env_old - 1; \
100  e_prev = FFMAX(e_prev, 0); \
101  for (b = 0; b < num; b++) { \
102  int val = PAR[e_prev][b] + get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
103  if (MASK) val &= MASK; \
104  PAR[e][b] = val; \
105  if (ERR_CONDITION) \
106  goto err; \
107  } \
108  } else { \
109  int val = 0; \
110  for (b = 0; b < num; b++) { \
111  val += get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
112  if (MASK) val &= MASK; \
113  PAR[e][b] = val; \
114  if (ERR_CONDITION) \
115  goto err; \
116  } \
117  } \
118  return 0; \
119 err: \
120  av_log(avctx, AV_LOG_ERROR, "illegal "#PAR"\n"); \
121  return -1; \
122 }
123 
124 READ_PAR_DATA(iid, huff_offset[table_idx], 0, FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant)
125 READ_PAR_DATA(icc, huff_offset[table_idx], 0, ps->icc_par[e][b] > 7U)
126 READ_PAR_DATA(ipdopd, 0, 0x07, 0)
127 
128 static int ps_read_extension_data(GetBitContext *gb, PSContext *ps, int ps_extension_id)
129 {
130  int e;
131  int count = get_bits_count(gb);
132 
133  if (ps_extension_id)
134  return 0;
135 
136  ps->enable_ipdopd = get_bits1(gb);
137  if (ps->enable_ipdopd) {
138  for (e = 0; e < ps->num_env; e++) {
139  int dt = get_bits1(gb);
140  read_ipdopd_data(NULL, gb, ps, ps->ipd_par, dt ? huff_ipd_dt : huff_ipd_df, e, dt);
141  dt = get_bits1(gb);
142  read_ipdopd_data(NULL, gb, ps, ps->opd_par, dt ? huff_opd_dt : huff_opd_df, e, dt);
143  }
144  }
145  skip_bits1(gb); //reserved_ps
146  return get_bits_count(gb) - count;
147 }
148 
149 static void ipdopd_reset(int8_t *ipd_hist, int8_t *opd_hist)
150 {
151  int i;
152  for (i = 0; i < PS_MAX_NR_IPDOPD; i++) {
153  opd_hist[i] = 0;
154  ipd_hist[i] = 0;
155  }
156 }
157 
158 int AAC_RENAME(ff_ps_read_data)(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
159 {
160  int e;
161  int bit_count_start = get_bits_count(gb_host);
162  int header;
163  int bits_consumed;
164  GetBitContext gbc = *gb_host, *gb = &gbc;
165 
166  header = get_bits1(gb);
167  if (header) { //enable_ps_header
168  ps->enable_iid = get_bits1(gb);
169  if (ps->enable_iid) {
170  int iid_mode = get_bits(gb, 3);
171  if (iid_mode > 5) {
172  av_log(avctx, AV_LOG_ERROR, "iid_mode %d is reserved.\n",
173  iid_mode);
174  goto err;
175  }
176  ps->nr_iid_par = nr_iidicc_par_tab[iid_mode];
177  ps->iid_quant = iid_mode > 2;
178  ps->nr_ipdopd_par = nr_iidopd_par_tab[iid_mode];
179  }
180  ps->enable_icc = get_bits1(gb);
181  if (ps->enable_icc) {
182  ps->icc_mode = get_bits(gb, 3);
183  if (ps->icc_mode > 5) {
184  av_log(avctx, AV_LOG_ERROR, "icc_mode %d is reserved.\n",
185  ps->icc_mode);
186  goto err;
187  }
188  ps->nr_icc_par = nr_iidicc_par_tab[ps->icc_mode];
189  }
190  ps->enable_ext = get_bits1(gb);
191  }
192 
193  ps->frame_class = get_bits1(gb);
194  ps->num_env_old = ps->num_env;
195  ps->num_env = num_env_tab[ps->frame_class][get_bits(gb, 2)];
196 
197  ps->border_position[0] = -1;
198  if (ps->frame_class) {
199  for (e = 1; e <= ps->num_env; e++) {
200  ps->border_position[e] = get_bits(gb, 5);
201  if (ps->border_position[e] < ps->border_position[e-1]) {
202  av_log(avctx, AV_LOG_ERROR, "border_position non monotone.\n");
203  goto err;
204  }
205  }
206  } else
207  for (e = 1; e <= ps->num_env; e++)
208  ps->border_position[e] = (e * numQMFSlots >> ff_log2_tab[ps->num_env]) - 1;
209 
210  if (ps->enable_iid) {
211  for (e = 0; e < ps->num_env; e++) {
212  int dt = get_bits1(gb);
213  if (read_iid_data(avctx, gb, ps, ps->iid_par, huff_iid[2*dt+ps->iid_quant], e, dt))
214  goto err;
215  }
216  } else
217  memset(ps->iid_par, 0, sizeof(ps->iid_par));
218 
219  if (ps->enable_icc)
220  for (e = 0; e < ps->num_env; e++) {
221  int dt = get_bits1(gb);
222  if (read_icc_data(avctx, gb, ps, ps->icc_par, dt ? huff_icc_dt : huff_icc_df, e, dt))
223  goto err;
224  }
225  else
226  memset(ps->icc_par, 0, sizeof(ps->icc_par));
227 
228  if (ps->enable_ext) {
229  int cnt = get_bits(gb, 4);
230  if (cnt == 15) {
231  cnt += get_bits(gb, 8);
232  }
233  cnt *= 8;
234  while (cnt > 7) {
235  int ps_extension_id = get_bits(gb, 2);
236  cnt -= 2 + ps_read_extension_data(gb, ps, ps_extension_id);
237  }
238  if (cnt < 0) {
239  av_log(avctx, AV_LOG_ERROR, "ps extension overflow %d\n", cnt);
240  goto err;
241  }
242  skip_bits(gb, cnt);
243  }
244 
245  ps->enable_ipdopd &= !PS_BASELINE;
246 
247  //Fix up envelopes
248  if (!ps->num_env || ps->border_position[ps->num_env] < numQMFSlots - 1) {
249  //Create a fake envelope
250  int source = ps->num_env ? ps->num_env - 1 : ps->num_env_old - 1;
251  int b;
252  if (source >= 0 && source != ps->num_env) {
253  if (ps->enable_iid) {
254  memcpy(ps->iid_par+ps->num_env, ps->iid_par+source, sizeof(ps->iid_par[0]));
255  }
256  if (ps->enable_icc) {
257  memcpy(ps->icc_par+ps->num_env, ps->icc_par+source, sizeof(ps->icc_par[0]));
258  }
259  if (ps->enable_ipdopd) {
260  memcpy(ps->ipd_par+ps->num_env, ps->ipd_par+source, sizeof(ps->ipd_par[0]));
261  memcpy(ps->opd_par+ps->num_env, ps->opd_par+source, sizeof(ps->opd_par[0]));
262  }
263  }
264  if (ps->enable_iid){
265  for (b = 0; b < ps->nr_iid_par; b++) {
266  if (FFABS(ps->iid_par[ps->num_env][b]) > 7 + 8 * ps->iid_quant) {
267  av_log(avctx, AV_LOG_ERROR, "iid_par invalid\n");
268  goto err;
269  }
270  }
271  }
272  if (ps->enable_icc){
273  for (b = 0; b < ps->nr_iid_par; b++) {
274  if (ps->icc_par[ps->num_env][b] > 7U) {
275  av_log(avctx, AV_LOG_ERROR, "icc_par invalid\n");
276  goto err;
277  }
278  }
279  }
280  ps->num_env++;
281  ps->border_position[ps->num_env] = numQMFSlots - 1;
282  }
283 
284 
285  ps->is34bands_old = ps->is34bands;
286  if (!PS_BASELINE && (ps->enable_iid || ps->enable_icc))
287  ps->is34bands = (ps->enable_iid && ps->nr_iid_par == 34) ||
288  (ps->enable_icc && ps->nr_icc_par == 34);
289 
290  //Baseline
291  if (!ps->enable_ipdopd) {
292  memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
293  memset(ps->opd_par, 0, sizeof(ps->opd_par));
294  }
295 
296  if (header)
297  ps->start = 1;
298 
299  bits_consumed = get_bits_count(gb) - bit_count_start;
300  if (bits_consumed <= bits_left) {
301  skip_bits_long(gb_host, bits_consumed);
302  return bits_consumed;
303  }
304  av_log(avctx, AV_LOG_ERROR, "Expected to read %d PS bits actually read %d.\n", bits_left, bits_consumed);
305 err:
306  ps->start = 0;
307  skip_bits_long(gb_host, bits_left);
308  memset(ps->iid_par, 0, sizeof(ps->iid_par));
309  memset(ps->icc_par, 0, sizeof(ps->icc_par));
310  memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
311  memset(ps->opd_par, 0, sizeof(ps->opd_par));
312  return bits_left;
313 }
314 
315 /** Split one subband into 2 subsubbands with a symmetric real filter.
316  * The filter must have its non-center even coefficients equal to zero. */
317 static void hybrid2_re(INTFLOAT (*in)[2], INTFLOAT (*out)[32][2], const INTFLOAT filter[8], int len, int reverse)
318 {
319  int i, j;
320  for (i = 0; i < len; i++, in++) {
321  INT64FLOAT re_in = AAC_MUL31(filter[6], in[6][0]); //real inphase
322  INT64FLOAT re_op = 0.0f; //real out of phase
323  INT64FLOAT im_in = AAC_MUL31(filter[6], in[6][1]); //imag inphase
324  INT64FLOAT im_op = 0.0f; //imag out of phase
325  for (j = 0; j < 6; j += 2) {
326  re_op += (INT64FLOAT)filter[j+1] * (in[j+1][0] + in[12-j-1][0]);
327  im_op += (INT64FLOAT)filter[j+1] * (in[j+1][1] + in[12-j-1][1]);
328  }
329 
330 #if USE_FIXED
331  re_op = (re_op + 0x40000000) >> 31;
332  im_op = (im_op + 0x40000000) >> 31;
333 #endif /* USE_FIXED */
334 
335  out[ reverse][i][0] = (INTFLOAT)(re_in + re_op);
336  out[ reverse][i][1] = (INTFLOAT)(im_in + im_op);
337  out[!reverse][i][0] = (INTFLOAT)(re_in - re_op);
338  out[!reverse][i][1] = (INTFLOAT)(im_in - im_op);
339  }
340 }
341 
342 /** Split one subband into 6 subsubbands with a complex filter */
343 static void hybrid6_cx(PSDSPContext *dsp, INTFLOAT (*in)[2], INTFLOAT (*out)[32][2],
344  TABLE_CONST INTFLOAT (*filter)[8][2], int len)
345 {
346  int i;
347  int N = 8;
348  LOCAL_ALIGNED_16(INTFLOAT, temp, [8], [2]);
349 
350  for (i = 0; i < len; i++, in++) {
351  dsp->hybrid_analysis(temp, in, (const INTFLOAT (*)[8][2]) filter, 1, N);
352  out[0][i][0] = temp[6][0];
353  out[0][i][1] = temp[6][1];
354  out[1][i][0] = temp[7][0];
355  out[1][i][1] = temp[7][1];
356  out[2][i][0] = temp[0][0];
357  out[2][i][1] = temp[0][1];
358  out[3][i][0] = temp[1][0];
359  out[3][i][1] = temp[1][1];
360  out[4][i][0] = temp[2][0] + temp[5][0];
361  out[4][i][1] = temp[2][1] + temp[5][1];
362  out[5][i][0] = temp[3][0] + temp[4][0];
363  out[5][i][1] = temp[3][1] + temp[4][1];
364  }
365 }
366 
367 static void hybrid4_8_12_cx(PSDSPContext *dsp,
368  INTFLOAT (*in)[2], INTFLOAT (*out)[32][2],
369  TABLE_CONST INTFLOAT (*filter)[8][2], int N, int len)
370 {
371  int i;
372 
373  for (i = 0; i < len; i++, in++) {
374  dsp->hybrid_analysis(out[0] + i, in, (const INTFLOAT (*)[8][2]) filter, 32, N);
375  }
376 }
377 
378 static void hybrid_analysis(PSDSPContext *dsp, INTFLOAT out[91][32][2],
379  INTFLOAT in[5][44][2], INTFLOAT L[2][38][64],
380  int is34, int len)
381 {
382  int i, j;
383  for (i = 0; i < 5; i++) {
384  for (j = 0; j < 38; j++) {
385  in[i][j+6][0] = L[0][j][i];
386  in[i][j+6][1] = L[1][j][i];
387  }
388  }
389  if (is34) {
390  hybrid4_8_12_cx(dsp, in[0], out, f34_0_12, 12, len);
391  hybrid4_8_12_cx(dsp, in[1], out+12, f34_1_8, 8, len);
392  hybrid4_8_12_cx(dsp, in[2], out+20, f34_2_4, 4, len);
393  hybrid4_8_12_cx(dsp, in[3], out+24, f34_2_4, 4, len);
394  hybrid4_8_12_cx(dsp, in[4], out+28, f34_2_4, 4, len);
395  dsp->hybrid_analysis_ileave(out + 27, L, 5, len);
396  } else {
397  hybrid6_cx(dsp, in[0], out, f20_0_8, len);
398  hybrid2_re(in[1], out+6, g1_Q2, len, 1);
399  hybrid2_re(in[2], out+8, g1_Q2, len, 0);
400  dsp->hybrid_analysis_ileave(out + 7, L, 3, len);
401  }
402  //update in_buf
403  for (i = 0; i < 5; i++) {
404  memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0]));
405  }
406 }
407 
408 static void hybrid_synthesis(PSDSPContext *dsp, INTFLOAT out[2][38][64],
409  INTFLOAT in[91][32][2], int is34, int len)
410 {
411  int i, n;
412  if (is34) {
413  for (n = 0; n < len; n++) {
414  memset(out[0][n], 0, 5*sizeof(out[0][n][0]));
415  memset(out[1][n], 0, 5*sizeof(out[1][n][0]));
416  for (i = 0; i < 12; i++) {
417  out[0][n][0] += in[ i][n][0];
418  out[1][n][0] += in[ i][n][1];
419  }
420  for (i = 0; i < 8; i++) {
421  out[0][n][1] += in[12+i][n][0];
422  out[1][n][1] += in[12+i][n][1];
423  }
424  for (i = 0; i < 4; i++) {
425  out[0][n][2] += in[20+i][n][0];
426  out[1][n][2] += in[20+i][n][1];
427  out[0][n][3] += in[24+i][n][0];
428  out[1][n][3] += in[24+i][n][1];
429  out[0][n][4] += in[28+i][n][0];
430  out[1][n][4] += in[28+i][n][1];
431  }
432  }
433  dsp->hybrid_synthesis_deint(out, in + 27, 5, len);
434  } else {
435  for (n = 0; n < len; n++) {
436  out[0][n][0] = in[0][n][0] + in[1][n][0] + in[2][n][0] +
437  in[3][n][0] + in[4][n][0] + in[5][n][0];
438  out[1][n][0] = in[0][n][1] + in[1][n][1] + in[2][n][1] +
439  in[3][n][1] + in[4][n][1] + in[5][n][1];
440  out[0][n][1] = in[6][n][0] + in[7][n][0];
441  out[1][n][1] = in[6][n][1] + in[7][n][1];
442  out[0][n][2] = in[8][n][0] + in[9][n][0];
443  out[1][n][2] = in[8][n][1] + in[9][n][1];
444  }
445  dsp->hybrid_synthesis_deint(out, in + 7, 3, len);
446  }
447 }
448 
449 /// All-pass filter decay slope
450 #define DECAY_SLOPE Q30(0.05f)
451 /// Number of frequency bands that can be addressed by the parameter index, b(k)
452 static const int NR_PAR_BANDS[] = { 20, 34 };
453 static const int NR_IPDOPD_BANDS[] = { 11, 17 };
454 /// Number of frequency bands that can be addressed by the sub subband index, k
455 static const int NR_BANDS[] = { 71, 91 };
456 /// Start frequency band for the all-pass filter decay slope
457 static const int DECAY_CUTOFF[] = { 10, 32 };
458 /// Number of all-pass filer bands
459 static const int NR_ALLPASS_BANDS[] = { 30, 50 };
460 /// First stereo band using the short one sample delay
461 static const int SHORT_DELAY_BAND[] = { 42, 62 };
462 
463 /** Table 8.46 */
464 static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
465 {
466  int b;
467  if (full)
468  b = 9;
469  else {
470  b = 4;
471  par_mapped[10] = 0;
472  }
473  for (; b >= 0; b--) {
474  par_mapped[2*b+1] = par_mapped[2*b] = par[b];
475  }
476 }
477 
478 static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
479 {
480  par_mapped[ 0] = (2*par[ 0] + par[ 1]) / 3;
481  par_mapped[ 1] = ( par[ 1] + 2*par[ 2]) / 3;
482  par_mapped[ 2] = (2*par[ 3] + par[ 4]) / 3;
483  par_mapped[ 3] = ( par[ 4] + 2*par[ 5]) / 3;
484  par_mapped[ 4] = ( par[ 6] + par[ 7]) / 2;
485  par_mapped[ 5] = ( par[ 8] + par[ 9]) / 2;
486  par_mapped[ 6] = par[10];
487  par_mapped[ 7] = par[11];
488  par_mapped[ 8] = ( par[12] + par[13]) / 2;
489  par_mapped[ 9] = ( par[14] + par[15]) / 2;
490  par_mapped[10] = par[16];
491  if (full) {
492  par_mapped[11] = par[17];
493  par_mapped[12] = par[18];
494  par_mapped[13] = par[19];
495  par_mapped[14] = ( par[20] + par[21]) / 2;
496  par_mapped[15] = ( par[22] + par[23]) / 2;
497  par_mapped[16] = ( par[24] + par[25]) / 2;
498  par_mapped[17] = ( par[26] + par[27]) / 2;
499  par_mapped[18] = ( par[28] + par[29] + par[30] + par[31]) / 4;
500  par_mapped[19] = ( par[32] + par[33]) / 2;
501  }
502 }
503 
505 {
506 #if USE_FIXED
507  par[ 0] = (int)(((int64_t)(par[ 0] + (unsigned)(par[ 1]>>1)) * 1431655765 + \
508  0x40000000) >> 31);
509  par[ 1] = (int)(((int64_t)((par[ 1]>>1) + (unsigned)par[ 2]) * 1431655765 + \
510  0x40000000) >> 31);
511  par[ 2] = (int)(((int64_t)(par[ 3] + (unsigned)(par[ 4]>>1)) * 1431655765 + \
512  0x40000000) >> 31);
513  par[ 3] = (int)(((int64_t)((par[ 4]>>1) + (unsigned)par[ 5]) * 1431655765 + \
514  0x40000000) >> 31);
515 #else
516  par[ 0] = (2*par[ 0] + par[ 1]) * 0.33333333f;
517  par[ 1] = ( par[ 1] + 2*par[ 2]) * 0.33333333f;
518  par[ 2] = (2*par[ 3] + par[ 4]) * 0.33333333f;
519  par[ 3] = ( par[ 4] + 2*par[ 5]) * 0.33333333f;
520 #endif /* USE_FIXED */
521  par[ 4] = AAC_HALF_SUM(par[ 6], par[ 7]);
522  par[ 5] = AAC_HALF_SUM(par[ 8], par[ 9]);
523  par[ 6] = par[10];
524  par[ 7] = par[11];
525  par[ 8] = AAC_HALF_SUM(par[12], par[13]);
526  par[ 9] = AAC_HALF_SUM(par[14], par[15]);
527  par[10] = par[16];
528  par[11] = par[17];
529  par[12] = par[18];
530  par[13] = par[19];
531  par[14] = AAC_HALF_SUM(par[20], par[21]);
532  par[15] = AAC_HALF_SUM(par[22], par[23]);
533  par[16] = AAC_HALF_SUM(par[24], par[25]);
534  par[17] = AAC_HALF_SUM(par[26], par[27]);
535 #if USE_FIXED
536  par[18] = (((par[28]+2)>>2) + ((par[29]+2)>>2) + ((par[30]+2)>>2) + ((par[31]+2)>>2));
537 #else
538  par[18] = ( par[28] + par[29] + par[30] + par[31]) * 0.25f;
539 #endif /* USE_FIXED */
540  par[19] = AAC_HALF_SUM(par[32], par[33]);
541 }
542 
543 static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
544 {
545  if (full) {
546  par_mapped[33] = par[9];
547  par_mapped[32] = par[9];
548  par_mapped[31] = par[9];
549  par_mapped[30] = par[9];
550  par_mapped[29] = par[9];
551  par_mapped[28] = par[9];
552  par_mapped[27] = par[8];
553  par_mapped[26] = par[8];
554  par_mapped[25] = par[8];
555  par_mapped[24] = par[8];
556  par_mapped[23] = par[7];
557  par_mapped[22] = par[7];
558  par_mapped[21] = par[7];
559  par_mapped[20] = par[7];
560  par_mapped[19] = par[6];
561  par_mapped[18] = par[6];
562  par_mapped[17] = par[5];
563  par_mapped[16] = par[5];
564  } else {
565  par_mapped[16] = 0;
566  }
567  par_mapped[15] = par[4];
568  par_mapped[14] = par[4];
569  par_mapped[13] = par[4];
570  par_mapped[12] = par[4];
571  par_mapped[11] = par[3];
572  par_mapped[10] = par[3];
573  par_mapped[ 9] = par[2];
574  par_mapped[ 8] = par[2];
575  par_mapped[ 7] = par[2];
576  par_mapped[ 6] = par[2];
577  par_mapped[ 5] = par[1];
578  par_mapped[ 4] = par[1];
579  par_mapped[ 3] = par[1];
580  par_mapped[ 2] = par[0];
581  par_mapped[ 1] = par[0];
582  par_mapped[ 0] = par[0];
583 }
584 
585 static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
586 {
587  if (full) {
588  par_mapped[33] = par[19];
589  par_mapped[32] = par[19];
590  par_mapped[31] = par[18];
591  par_mapped[30] = par[18];
592  par_mapped[29] = par[18];
593  par_mapped[28] = par[18];
594  par_mapped[27] = par[17];
595  par_mapped[26] = par[17];
596  par_mapped[25] = par[16];
597  par_mapped[24] = par[16];
598  par_mapped[23] = par[15];
599  par_mapped[22] = par[15];
600  par_mapped[21] = par[14];
601  par_mapped[20] = par[14];
602  par_mapped[19] = par[13];
603  par_mapped[18] = par[12];
604  par_mapped[17] = par[11];
605  }
606  par_mapped[16] = par[10];
607  par_mapped[15] = par[ 9];
608  par_mapped[14] = par[ 9];
609  par_mapped[13] = par[ 8];
610  par_mapped[12] = par[ 8];
611  par_mapped[11] = par[ 7];
612  par_mapped[10] = par[ 6];
613  par_mapped[ 9] = par[ 5];
614  par_mapped[ 8] = par[ 5];
615  par_mapped[ 7] = par[ 4];
616  par_mapped[ 6] = par[ 4];
617  par_mapped[ 5] = par[ 3];
618  par_mapped[ 4] = (par[ 2] + par[ 3]) / 2;
619  par_mapped[ 3] = par[ 2];
620  par_mapped[ 2] = par[ 1];
621  par_mapped[ 1] = (par[ 0] + par[ 1]) / 2;
622  par_mapped[ 0] = par[ 0];
623 }
624 
626 {
627  par[33] = par[19];
628  par[32] = par[19];
629  par[31] = par[18];
630  par[30] = par[18];
631  par[29] = par[18];
632  par[28] = par[18];
633  par[27] = par[17];
634  par[26] = par[17];
635  par[25] = par[16];
636  par[24] = par[16];
637  par[23] = par[15];
638  par[22] = par[15];
639  par[21] = par[14];
640  par[20] = par[14];
641  par[19] = par[13];
642  par[18] = par[12];
643  par[17] = par[11];
644  par[16] = par[10];
645  par[15] = par[ 9];
646  par[14] = par[ 9];
647  par[13] = par[ 8];
648  par[12] = par[ 8];
649  par[11] = par[ 7];
650  par[10] = par[ 6];
651  par[ 9] = par[ 5];
652  par[ 8] = par[ 5];
653  par[ 7] = par[ 4];
654  par[ 6] = par[ 4];
655  par[ 5] = par[ 3];
656  par[ 4] = AAC_HALF_SUM(par[ 2], par[ 3]);
657  par[ 3] = par[ 2];
658  par[ 2] = par[ 1];
659  par[ 1] = AAC_HALF_SUM(par[ 0], par[ 1]);
660 }
661 
662 static void decorrelation(PSContext *ps, INTFLOAT (*out)[32][2], const INTFLOAT (*s)[32][2], int is34)
663 {
665  LOCAL_ALIGNED_16(INTFLOAT, transient_gain, [34], [PS_QMF_TIME_SLOTS]);
666  INTFLOAT *peak_decay_nrg = ps->peak_decay_nrg;
667  INTFLOAT *power_smooth = ps->power_smooth;
668  INTFLOAT *peak_decay_diff_smooth = ps->peak_decay_diff_smooth;
669  INTFLOAT (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay;
671 #if !USE_FIXED
672  const float transient_impact = 1.5f;
673  const float a_smooth = 0.25f; ///< Smoothing coefficient
674 #endif /* USE_FIXED */
675  const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
676  int i, k, m, n;
677  int n0 = 0, nL = 32;
678  const INTFLOAT peak_decay_factor = Q31(0.76592833836465f);
679 
680  memset(power, 0, 34 * sizeof(*power));
681 
682  if (is34 != ps->is34bands_old) {
683  memset(ps->peak_decay_nrg, 0, sizeof(ps->peak_decay_nrg));
684  memset(ps->power_smooth, 0, sizeof(ps->power_smooth));
685  memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth));
686  memset(ps->delay, 0, sizeof(ps->delay));
687  memset(ps->ap_delay, 0, sizeof(ps->ap_delay));
688  }
689 
690  for (k = 0; k < NR_BANDS[is34]; k++) {
691  int i = k_to_i[k];
692  ps->dsp.add_squares(power[i], s[k], nL - n0);
693  }
694 
695  //Transient detection
696 #if USE_FIXED
697  for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
698  for (n = n0; n < nL; n++) {
699  int decayed_peak;
700  decayed_peak = (int)(((int64_t)peak_decay_factor * \
701  peak_decay_nrg[i] + 0x40000000) >> 31);
702  peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
703  power_smooth[i] += (power[i][n] + 2LL - power_smooth[i]) >> 2;
704  peak_decay_diff_smooth[i] += (peak_decay_nrg[i] + 2LL - power[i][n] - \
705  peak_decay_diff_smooth[i]) >> 2;
706 
707  if (peak_decay_diff_smooth[i]) {
708  transient_gain[i][n] = FFMIN(power_smooth[i]*43691LL / peak_decay_diff_smooth[i], 1<<16);
709  } else
710  transient_gain[i][n] = 1 << 16;
711  }
712  }
713 #else
714  for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
715  for (n = n0; n < nL; n++) {
716  float decayed_peak = peak_decay_factor * peak_decay_nrg[i];
717  float denom;
718  peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
719  power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]);
720  peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]);
721  denom = transient_impact * peak_decay_diff_smooth[i];
722  transient_gain[i][n] = (denom > power_smooth[i]) ?
723  power_smooth[i] / denom : 1.0f;
724  }
725  }
726 
727 #endif /* USE_FIXED */
728  //Decorrelation and transient reduction
729  // PS_AP_LINKS - 1
730  // -----
731  // | | Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k]
732  //H[k][z] = z^-2 * phi_fract[k] * | | ----------------------------------------------------------------
733  // | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m]
734  // m = 0
735  //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z]
736  for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) {
737  int b = k_to_i[k];
738 #if USE_FIXED
739  int g_decay_slope;
740 
741  if (k - DECAY_CUTOFF[is34] <= 0) {
742  g_decay_slope = 1 << 30;
743  }
744  else if (k - DECAY_CUTOFF[is34] >= 20) {
745  g_decay_slope = 0;
746  }
747  else {
748  g_decay_slope = (1 << 30) - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
749  }
750 #else
751  float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
752  g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f);
753 #endif /* USE_FIXED */
754  memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
755  memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
756  for (m = 0; m < PS_AP_LINKS; m++) {
757  memcpy(ap_delay[k][m], ap_delay[k][m]+numQMFSlots, 5*sizeof(ap_delay[k][m][0]));
758  }
759  ps->dsp.decorrelate(out[k], delay[k] + PS_MAX_DELAY - 2, ap_delay[k],
760  phi_fract[is34][k],
761  (const INTFLOAT (*)[2]) Q_fract_allpass[is34][k],
762  transient_gain[b], g_decay_slope, nL - n0);
763  }
764  for (; k < SHORT_DELAY_BAND[is34]; k++) {
765  int i = k_to_i[k];
766  memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
767  memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
768  //H = delay 14
769  ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 14,
770  transient_gain[i], nL - n0);
771  }
772  for (; k < NR_BANDS[is34]; k++) {
773  int i = k_to_i[k];
774  memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
775  memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
776  //H = delay 1
777  ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 1,
778  transient_gain[i], nL - n0);
779  }
780 }
781 
782 static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
783  int8_t (*par)[PS_MAX_NR_IIDICC],
784  int num_par, int num_env, int full)
785 {
786  int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
787  int e;
788  if (num_par == 20 || num_par == 11) {
789  for (e = 0; e < num_env; e++) {
790  map_idx_20_to_34(par_mapped[e], par[e], full);
791  }
792  } else if (num_par == 10 || num_par == 5) {
793  for (e = 0; e < num_env; e++) {
794  map_idx_10_to_34(par_mapped[e], par[e], full);
795  }
796  } else {
797  *p_par_mapped = par;
798  }
799 }
800 
801 static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
802  int8_t (*par)[PS_MAX_NR_IIDICC],
803  int num_par, int num_env, int full)
804 {
805  int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
806  int e;
807  if (num_par == 34 || num_par == 17) {
808  for (e = 0; e < num_env; e++) {
809  map_idx_34_to_20(par_mapped[e], par[e], full);
810  }
811  } else if (num_par == 10 || num_par == 5) {
812  for (e = 0; e < num_env; e++) {
813  map_idx_10_to_20(par_mapped[e], par[e], full);
814  }
815  } else {
816  *p_par_mapped = par;
817  }
818 }
819 
820 static void stereo_processing(PSContext *ps, INTFLOAT (*l)[32][2], INTFLOAT (*r)[32][2], int is34)
821 {
822  int e, b, k;
823 
824  INTFLOAT (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11;
825  INTFLOAT (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12;
826  INTFLOAT (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21;
827  INTFLOAT (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22;
828  int8_t *opd_hist = ps->opd_hist;
829  int8_t *ipd_hist = ps->ipd_hist;
830  int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
831  int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
832  int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
833  int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
834  int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf;
835  int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf;
836  int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf;
837  int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf;
838  const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
839  TABLE_CONST INTFLOAT (*H_LUT)[8][4] = (PS_BASELINE || ps->icc_mode < 3) ? HA : HB;
840 
841  //Remapping
842  if (ps->num_env_old) {
843  memcpy(H11[0][0], H11[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[0][0][0]));
844  memcpy(H11[1][0], H11[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[1][0][0]));
845  memcpy(H12[0][0], H12[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[0][0][0]));
846  memcpy(H12[1][0], H12[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[1][0][0]));
847  memcpy(H21[0][0], H21[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[0][0][0]));
848  memcpy(H21[1][0], H21[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[1][0][0]));
849  memcpy(H22[0][0], H22[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[0][0][0]));
850  memcpy(H22[1][0], H22[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[1][0][0]));
851  }
852 
853  if (is34) {
854  remap34(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
855  remap34(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
856  if (ps->enable_ipdopd) {
857  remap34(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
858  remap34(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
859  }
860  if (!ps->is34bands_old) {
861  map_val_20_to_34(H11[0][0]);
862  map_val_20_to_34(H11[1][0]);
863  map_val_20_to_34(H12[0][0]);
864  map_val_20_to_34(H12[1][0]);
865  map_val_20_to_34(H21[0][0]);
866  map_val_20_to_34(H21[1][0]);
867  map_val_20_to_34(H22[0][0]);
868  map_val_20_to_34(H22[1][0]);
869  ipdopd_reset(ipd_hist, opd_hist);
870  }
871  } else {
872  remap20(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
873  remap20(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
874  if (ps->enable_ipdopd) {
875  remap20(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
876  remap20(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
877  }
878  if (ps->is34bands_old) {
879  map_val_34_to_20(H11[0][0]);
880  map_val_34_to_20(H11[1][0]);
881  map_val_34_to_20(H12[0][0]);
882  map_val_34_to_20(H12[1][0]);
883  map_val_34_to_20(H21[0][0]);
884  map_val_34_to_20(H21[1][0]);
885  map_val_34_to_20(H22[0][0]);
886  map_val_34_to_20(H22[1][0]);
887  ipdopd_reset(ipd_hist, opd_hist);
888  }
889  }
890 
891  //Mixing
892  for (e = 0; e < ps->num_env; e++) {
893  for (b = 0; b < NR_PAR_BANDS[is34]; b++) {
894  INTFLOAT h11, h12, h21, h22;
895  h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][0];
896  h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][1];
897  h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][2];
898  h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][3];
899 
900  if (!PS_BASELINE && ps->enable_ipdopd && b < NR_IPDOPD_BANDS[is34]) {
901  //The spec say says to only run this smoother when enable_ipdopd
902  //is set but the reference decoder appears to run it constantly
903  INTFLOAT h11i, h12i, h21i, h22i;
904  INTFLOAT ipd_adj_re, ipd_adj_im;
905  int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b];
906  int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b];
907  INTFLOAT opd_re = pd_re_smooth[opd_idx];
908  INTFLOAT opd_im = pd_im_smooth[opd_idx];
909  INTFLOAT ipd_re = pd_re_smooth[ipd_idx];
910  INTFLOAT ipd_im = pd_im_smooth[ipd_idx];
911  opd_hist[b] = opd_idx & 0x3F;
912  ipd_hist[b] = ipd_idx & 0x3F;
913 
914  ipd_adj_re = AAC_MADD30(opd_re, ipd_re, opd_im, ipd_im);
915  ipd_adj_im = AAC_MSUB30(opd_im, ipd_re, opd_re, ipd_im);
916  h11i = AAC_MUL30(h11, opd_im);
917  h11 = AAC_MUL30(h11, opd_re);
918  h12i = AAC_MUL30(h12, ipd_adj_im);
919  h12 = AAC_MUL30(h12, ipd_adj_re);
920  h21i = AAC_MUL30(h21, opd_im);
921  h21 = AAC_MUL30(h21, opd_re);
922  h22i = AAC_MUL30(h22, ipd_adj_im);
923  h22 = AAC_MUL30(h22, ipd_adj_re);
924  H11[1][e+1][b] = h11i;
925  H12[1][e+1][b] = h12i;
926  H21[1][e+1][b] = h21i;
927  H22[1][e+1][b] = h22i;
928  }
929  H11[0][e+1][b] = h11;
930  H12[0][e+1][b] = h12;
931  H21[0][e+1][b] = h21;
932  H22[0][e+1][b] = h22;
933  }
934  for (k = 0; k < NR_BANDS[is34]; k++) {
935  LOCAL_ALIGNED_16(INTFLOAT, h, [2], [4]);
936  LOCAL_ALIGNED_16(INTFLOAT, h_step, [2], [4]);
937  int start = ps->border_position[e];
938  int stop = ps->border_position[e+1];
939  INTFLOAT width = Q30(1.f) / ((stop - start) ? (stop - start) : 1);
940 #if USE_FIXED
941  width = FFMIN(2U*width, INT_MAX);
942 #endif
943  b = k_to_i[k];
944  h[0][0] = H11[0][e][b];
945  h[0][1] = H12[0][e][b];
946  h[0][2] = H21[0][e][b];
947  h[0][3] = H22[0][e][b];
948  if (!PS_BASELINE && ps->enable_ipdopd) {
949  //Is this necessary? ps_04_new seems unchanged
950  if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) {
951  h[1][0] = -H11[1][e][b];
952  h[1][1] = -H12[1][e][b];
953  h[1][2] = -H21[1][e][b];
954  h[1][3] = -H22[1][e][b];
955  } else {
956  h[1][0] = H11[1][e][b];
957  h[1][1] = H12[1][e][b];
958  h[1][2] = H21[1][e][b];
959  h[1][3] = H22[1][e][b];
960  }
961  }
962  //Interpolation
963  h_step[0][0] = AAC_MSUB31_V3(H11[0][e+1][b], h[0][0], width);
964  h_step[0][1] = AAC_MSUB31_V3(H12[0][e+1][b], h[0][1], width);
965  h_step[0][2] = AAC_MSUB31_V3(H21[0][e+1][b], h[0][2], width);
966  h_step[0][3] = AAC_MSUB31_V3(H22[0][e+1][b], h[0][3], width);
967  if (!PS_BASELINE && ps->enable_ipdopd) {
968  h_step[1][0] = AAC_MSUB31_V3(H11[1][e+1][b], h[1][0], width);
969  h_step[1][1] = AAC_MSUB31_V3(H12[1][e+1][b], h[1][1], width);
970  h_step[1][2] = AAC_MSUB31_V3(H21[1][e+1][b], h[1][2], width);
971  h_step[1][3] = AAC_MSUB31_V3(H22[1][e+1][b], h[1][3], width);
972  }
973  if (stop - start)
975  l[k] + 1 + start, r[k] + 1 + start,
976  h, h_step, stop - start);
977  }
978  }
979 }
980 
981 int AAC_RENAME(ff_ps_apply)(AVCodecContext *avctx, PSContext *ps, INTFLOAT L[2][38][64], INTFLOAT R[2][38][64], int top)
982 {
983  INTFLOAT (*Lbuf)[32][2] = ps->Lbuf;
984  INTFLOAT (*Rbuf)[32][2] = ps->Rbuf;
985  const int len = 32;
986  int is34 = ps->is34bands;
987 
988  top += NR_BANDS[is34] - 64;
989  memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0]));
990  if (top < NR_ALLPASS_BANDS[is34])
991  memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0]));
992 
993  hybrid_analysis(&ps->dsp, Lbuf, ps->in_buf, L, is34, len);
994  decorrelation(ps, Rbuf, (const INTFLOAT (*)[32][2]) Lbuf, is34);
995  stereo_processing(ps, Lbuf, Rbuf, is34);
996  hybrid_synthesis(&ps->dsp, L, Lbuf, is34, len);
997  hybrid_synthesis(&ps->dsp, R, Rbuf, is34, len);
998 
999  return 0;
1000 }
1001 
1002 #define PS_INIT_VLC_STATIC(num, size) \
1003  INIT_VLC_STATIC(&vlc_ps[num], 9, ps_tmp[num].table_size / ps_tmp[num].elem_size, \
1004  ps_tmp[num].ps_bits, 1, 1, \
1005  ps_tmp[num].ps_codes, ps_tmp[num].elem_size, ps_tmp[num].elem_size, \
1006  size);
1007 
1008 #define PS_VLC_ROW(name) \
1009  { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
1010 
1012  // Syntax initialization
1013  static const struct {
1014  const void *ps_codes, *ps_bits;
1015  const unsigned int table_size, elem_size;
1016  } ps_tmp[] = {
1027  };
1028 
1029  PS_INIT_VLC_STATIC(0, 1544);
1030  PS_INIT_VLC_STATIC(1, 832);
1031  PS_INIT_VLC_STATIC(2, 1024);
1032  PS_INIT_VLC_STATIC(3, 1036);
1033  PS_INIT_VLC_STATIC(4, 544);
1034  PS_INIT_VLC_STATIC(5, 544);
1035  PS_INIT_VLC_STATIC(6, 512);
1036  PS_INIT_VLC_STATIC(7, 512);
1037  PS_INIT_VLC_STATIC(8, 512);
1038  PS_INIT_VLC_STATIC(9, 512);
1039 
1040  ps_tableinit();
1041 }
1042 
1044 {
1045  AAC_RENAME(ff_psdsp_init)(&ps->dsp);
1046 }
void AAC_RENAME() ff_psdsp_init(PSDSPContext *s)
void(* mul_pair_single)(INTFLOAT(*dst)[2], INTFLOAT(*src0)[2], INTFLOAT *src1, int n)
Definition: aacpsdsp.h:34
static const INTFLOAT g1_Q2[]
Definition: aacpsdata.c:160
#define NULL
Definition: coverity.c:32
const char * s
Definition: avisynth_c.h:768
static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
Definition: aacps.c:585
INTFLOAT peak_decay_diff_smooth[34]
Definition: aacps.h:69
int nr_iid_par
Definition: aacps.h:45
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:269
else temp
Definition: vf_mcdeint.c:256
static int HA[46][8][4]
static TABLE_CONST int Q_fract_allpass[2][50][3][2]
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
Definition: get_bits.h:212
static void ipdopd_reset(int8_t *ipd_hist, int8_t *opd_hist)
Definition: aacps.c:149
INTFLOAT peak_decay_nrg[34]
Definition: aacps.h:67
static const int NR_BANDS[]
Number of frequency bands that can be addressed by the sub subband index, k.
Definition: aacps.c:455
int AAC_RENAME() ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
Definition: aacps.c:158
const char * b
Definition: vf_curves.c:113
static const int8_t nr_iidopd_par_tab[]
Definition: aacps.c:54
static const int NR_IPDOPD_BANDS[]
Definition: aacps.c:453
static const int8_t huff_offset[]
Definition: aacpsdata.c:136
static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
Table 8.46.
Definition: aacps.c:464
static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
Definition: aacps.c:478
int enable_ipdopd
Definition: aacps.h:54
void(* hybrid_synthesis_deint)(INTFLOAT out[2][38][64], INTFLOAT(*in)[32][2], int i, int len)
Definition: aacpsdsp.h:41
INTFLOAT ap_delay[PS_MAX_AP_BANDS][PS_AP_LINKS][PS_QMF_TIME_SLOTS+PS_MAX_AP_DELAY][2]
Definition: aacps.h:66
#define N
Definition: af_mcompand.c:54
static const int8_t k_to_i_34[]
Table 8.49.
Definition: aacpsdata.c:152
#define PS_INIT_VLC_STATIC(num, size)
Definition: aacps.c:1002
int AAC_RENAME() ff_ps_apply(AVCodecContext *avctx, PSContext *ps, INTFLOAT L[2][38][64], INTFLOAT R[2][38][64], int top)
Definition: aacps.c:981
float INTFLOAT
Definition: aac_defines.h:86
#define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION)
Definition: aacps.c:80
static void filter(int16_t *output, ptrdiff_t out_stride, int16_t *low, ptrdiff_t low_stride, int16_t *high, ptrdiff_t high_stride, int len, int clip)
Definition: cfhd.c:114
static int pd_im_smooth[8 *8 *8]
#define Q30(x)
Definition: aac_defines.h:95
#define av_cold
Definition: attributes.h:82
INTFLOAT H21[2][PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC]
Definition: aacps.h:72
INTFLOAT delay[PS_MAX_SSB][PS_QMF_TIME_SLOTS+PS_MAX_DELAY][2]
Definition: aacps.h:65
static uint32_t reverse(uint32_t num, int bits)
Definition: speedhq.c:565
#define PS_MAX_AP_DELAY
Definition: aacps.h:39
void(* decorrelate)(INTFLOAT(*out)[2], INTFLOAT(*delay)[2], INTFLOAT(*ap_delay)[PS_QMF_TIME_SLOTS+PS_MAX_AP_DELAY][2], const INTFLOAT phi_fract[2], const INTFLOAT(*Q_fract)[2], const INTFLOAT *transient_gain, INTFLOAT g_decay_slope, int len)
Definition: aacpsdsp.h:43
static void hybrid_analysis(PSDSPContext *dsp, INTFLOAT out[91][32][2], INTFLOAT in[5][44][2], INTFLOAT L[2][38][64], int is34, int len)
Definition: aacps.c:378
static void remap34(int8_t(**p_par_mapped)[PS_MAX_NR_IIDICC], int8_t(*par)[PS_MAX_NR_IIDICC], int num_par, int num_env, int full)
Definition: aacps.c:782
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:200
#define AAC_MUL31(x, y)
Definition: aac_defines.h:102
int num_env_old
Definition: aacps.h:52
void(* add_squares)(INTFLOAT *dst, const INTFLOAT(*src)[2], int n)
Definition: aacpsdsp.h:33
bitstream reader API header.
static int f34_0_12[12][8][2]
static const uint8_t header[24]
Definition: sdr2.c:67
static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
Definition: aacps.c:543
#define av_log(a,...)
#define DECAY_SLOPE
All-pass filter decay slope.
Definition: aacps.c:450
static void hybrid6_cx(PSDSPContext *dsp, INTFLOAT(*in)[2], INTFLOAT(*out)[32][2], TABLE_CONST INTFLOAT(*filter)[8][2], int len)
Split one subband into 6 subsubbands with a complex filter.
Definition: aacps.c:343
#define TABLE_CONST
#define U(x)
Definition: vp56_arith.h:37
#define AAC_MSUB30(x, y, a, b)
Definition: aac_defines.h:107
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
#define PS_MAX_NR_IIDICC
Definition: aacps.h:32
static void hybrid2_re(INTFLOAT(*in)[2], INTFLOAT(*out)[32][2], const INTFLOAT filter[8], int len, int reverse)
Split one subband into 2 subsubbands with a symmetric real filter.
Definition: aacps.c:317
#define R
Definition: huffyuvdsp.h:34
int8_t icc_par[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]
Inter-Channel Coherence Parameters.
Definition: aacps.h:57
int iid_quant
Definition: aacps.h:44
#define AAC_HALF_SUM(x, y)
Definition: aac_defines.h:111
static const int SHORT_DELAY_BAND[]
First stereo band using the short one sample delay.
Definition: aacps.c:461
#define PS_BASELINE
Operate in Baseline PS mode.
Definition: aacps.c:39
INTFLOAT H22[2][PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC]
Definition: aacps.h:73
const char * r
Definition: vf_curves.c:111
uint16_t width
Definition: gdv.c:47
void(* hybrid_analysis)(INTFLOAT(*out)[2], INTFLOAT(*in)[2], const INTFLOAT(*filter)[8][2], ptrdiff_t stride, int n)
Definition: aacpsdsp.h:36
#define PS_VLC_ROW(name)
Definition: aacps.c:1008
#define FFMAX(a, b)
Definition: common.h:94
int num_env
Definition: aacps.h:53
static int phi_fract[2][50][2]
Definition: vlc.h:26
int nr_icc_par
Definition: aacps.h:49
#define AAC_RENAME(x)
Definition: aac_defines.h:84
common internal API header
static int f34_1_8[8][8][2]
void(* stereo_interpolate[2])(INTFLOAT(*l)[2], INTFLOAT(*r)[2], INTFLOAT h[2][4], INTFLOAT h_step[2][4], int len)
Definition: aacpsdsp.h:49
#define PS_MAX_NUM_ENV
Definition: aacps.h:31
#define Q31(x)
Definition: aac_defines.h:96
#define FFMIN(a, b)
Definition: common.h:96
static void stereo_processing(PSContext *ps, INTFLOAT(*l)[32][2], INTFLOAT(*r)[32][2], int is34)
Definition: aacps.c:820
static void map_val_20_to_34(INTFLOAT par[PS_MAX_NR_IIDICC])
Definition: aacps.c:625
static void hybrid_synthesis(PSDSPContext *dsp, INTFLOAT out[2][38][64], INTFLOAT in[91][32][2], int is34, int len)
Definition: aacps.c:408
int8_t ipd_hist[PS_MAX_NR_IIDICC]
Definition: aacps.h:77
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
static const int huff_iid[]
Definition: aacps.c:71
int n
Definition: avisynth_c.h:684
int8_t ipd_par[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]
Inter-channel Phase Difference Parameters.
Definition: aacps.h:59
av_cold void AAC_RENAME() ff_ps_init(void)
Definition: aacps.c:1011
static const int8_t nr_iidicc_par_tab[]
Definition: aacps.c:50
#define L(x)
Definition: vp56_arith.h:36
#define INTFLOAT
const uint8_t ff_log2_tab[256]
Definition: log2_tab.c:23
#define PS_MAX_DELAY
Definition: aacps.h:37
PSDSPContext dsp
Definition: aacps.h:78
static int HB[46][8][4]
static const int NR_ALLPASS_BANDS[]
Number of all-pass filer bands.
Definition: aacps.c:459
Libavcodec external API header.
typedef void(RENAME(mix_any_func_type))
static const int8_t num_env_tab[2][4]
Definition: aacps.c:45
static void hybrid4_8_12_cx(PSDSPContext *dsp, INTFLOAT(*in)[2], INTFLOAT(*out)[32][2], TABLE_CONST INTFLOAT(*filter)[8][2], int N, int len)
Definition: aacps.c:367
main external API structure.
Definition: avcodec.h:1518
static void decorrelation(PSContext *ps, INTFLOAT(*out)[32][2], const INTFLOAT(*s)[32][2], int is34)
Definition: aacps.c:662
static void ps_tableinit(void)
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:321
int8_t iid_par[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]
Inter-channel Intensity Difference Parameters.
Definition: aacps.h:56
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
static void skip_bits1(GetBitContext *s)
Definition: get_bits.h:346
static const int NR_PAR_BANDS[]
Number of frequency bands that can be addressed by the parameter index, b(k)
Definition: aacps.c:452
int is34bands_old
Definition: aacps.h:62
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:314
#define AAC_MUL30(x, y)
Definition: aac_defines.h:101
INTFLOAT power_smooth[34]
Definition: aacps.h:68
av_cold void AAC_RENAME() ff_ps_ctx_init(PSContext *ps)
Definition: aacps.c:1043
int8_t opd_hist[PS_MAX_NR_IIDICC]
Definition: aacps.h:76
int border_position[PS_MAX_NUM_ENV+1]
Definition: aacps.h:55
#define AAC_MADD30(x, y, a, b)
Definition: aac_defines.h:104
static VLC vlc_ps[10]
Definition: aacps.c:78
#define AAC_MSUB31_V3(x, y, z)
Definition: aac_defines.h:110
#define PS_AP_LINKS
Definition: aacps.h:38
int
common internal and external API header
static const int8_t k_to_i_20[]
Table 8.48.
Definition: aacpsdata.c:145
void(* hybrid_analysis_ileave)(INTFLOAT(*out)[32][2], INTFLOAT L[2][38][64], int i, int len)
Definition: aacpsdsp.h:39
#define numQMFSlots
Definition: aacps.c:43
#define PS_QMF_TIME_SLOTS
Definition: aacps.h:36
static void remap20(int8_t(**p_par_mapped)[PS_MAX_NR_IIDICC], int8_t(*par)[PS_MAX_NR_IIDICC], int num_par, int num_env, int full)
Definition: aacps.c:801
int len
static int pd_re_smooth[8 *8 *8]
INTFLOAT H12[2][PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC]
Definition: aacps.h:71
static int f34_2_4[4][8][2]
static void map_val_34_to_20(INTFLOAT par[PS_MAX_NR_IIDICC])
Definition: aacps.c:504
INTFLOAT H11[2][PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC]
Definition: aacps.h:70
static const int DECAY_CUTOFF[]
Start frequency band for the all-pass filter decay slope.
Definition: aacps.c:457
#define PS_MAX_NR_IPDOPD
Definition: aacps.h:33
FILE * out
Definition: movenc.c:54
static int ps_read_extension_data(GetBitContext *gb, PSContext *ps, int ps_extension_id)
Definition: aacps.c:128
#define LOCAL_ALIGNED_16(t, v,...)
Definition: internal.h:131
void INT64 INT64 count
Definition: avisynth_c.h:690
void INT64 start
Definition: avisynth_c.h:690
static int f20_0_8[8][8][2]
int nr_ipdopd_par
Definition: aacps.h:46
int8_t opd_par[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]
Overall Phase Difference Parameters.
Definition: aacps.h:60
float INT64FLOAT
Definition: aac_defines.h:88
int icc_mode
Definition: aacps.h:48