FFmpeg  4.0
ac3enc.c
Go to the documentation of this file.
1 /*
2  * The simplest AC-3 encoder
3  * Copyright (c) 2000 Fabrice Bellard
4  * Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com>
5  * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 /**
25  * @file
26  * The simplest AC-3 encoder.
27  */
28 
29 #include <stdint.h>
30 
31 #include "libavutil/attributes.h"
32 #include "libavutil/avassert.h"
33 #include "libavutil/avstring.h"
35 #include "libavutil/crc.h"
36 #include "libavutil/internal.h"
37 #include "libavutil/opt.h"
38 #include "avcodec.h"
39 #include "internal.h"
40 #include "me_cmp.h"
41 #include "put_bits.h"
42 #include "audiodsp.h"
43 #include "ac3dsp.h"
44 #include "ac3.h"
45 #include "fft.h"
46 #include "ac3enc.h"
47 #include "eac3enc.h"
48 
49 typedef struct AC3Mant {
50  int16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4
51  int mant1_cnt, mant2_cnt, mant4_cnt; ///< mantissa counts for bap=1,2,4
52 } AC3Mant;
53 
54 #define CMIXLEV_NUM_OPTIONS 3
55 static const float cmixlev_options[CMIXLEV_NUM_OPTIONS] = {
57 };
58 
59 #define SURMIXLEV_NUM_OPTIONS 3
62 };
63 
64 #define EXTMIXLEV_NUM_OPTIONS 8
68 };
69 
70 
71 /**
72  * LUT for number of exponent groups.
73  * exponent_group_tab[coupling][exponent strategy-1][number of coefficients]
74  */
75 static uint8_t exponent_group_tab[2][3][256];
76 
77 
78 /**
79  * List of supported channel layouts.
80  */
81 const uint64_t ff_ac3_channel_layouts[19] = {
92  (AV_CH_LAYOUT_STEREO | AV_CH_LOW_FREQUENCY),
93  (AV_CH_LAYOUT_2_1 | AV_CH_LOW_FREQUENCY),
94  (AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY),
95  (AV_CH_LAYOUT_2_2 | AV_CH_LOW_FREQUENCY),
96  (AV_CH_LAYOUT_QUAD | AV_CH_LOW_FREQUENCY),
97  (AV_CH_LAYOUT_4POINT0 | AV_CH_LOW_FREQUENCY),
100  0
101 };
102 
103 
104 /**
105  * LUT to select the bandwidth code based on the bit rate, sample rate, and
106  * number of full-bandwidth channels.
107  * bandwidth_tab[fbw_channels-1][sample rate code][bit rate code]
108  */
109 static const uint8_t ac3_bandwidth_tab[5][3][19] = {
110 // 32 40 48 56 64 80 96 112 128 160 192 224 256 320 384 448 512 576 640
111 
112  { { 0, 0, 0, 12, 16, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48 },
113  { 0, 0, 0, 16, 20, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56 },
114  { 0, 0, 0, 32, 40, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } },
115 
116  { { 0, 0, 0, 0, 0, 0, 0, 20, 24, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48 },
117  { 0, 0, 0, 0, 0, 0, 4, 24, 28, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56 },
118  { 0, 0, 0, 0, 0, 0, 20, 44, 52, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } },
119 
120  { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 24, 32, 40, 48, 48, 48, 48, 48, 48 },
121  { 0, 0, 0, 0, 0, 0, 0, 0, 4, 20, 28, 36, 44, 56, 56, 56, 56, 56, 56 },
122  { 0, 0, 0, 0, 0, 0, 0, 0, 20, 40, 48, 60, 60, 60, 60, 60, 60, 60, 60 } },
123 
124  { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 32, 48, 48, 48, 48, 48, 48 },
125  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 28, 36, 56, 56, 56, 56, 56, 56 },
126  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 48, 60, 60, 60, 60, 60, 60, 60 } },
127 
128  { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 20, 32, 40, 48, 48, 48, 48 },
129  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 36, 44, 56, 56, 56, 56 },
130  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 44, 60, 60, 60, 60, 60, 60 } }
131 };
132 
133 
134 /**
135  * LUT to select the coupling start band based on the bit rate, sample rate, and
136  * number of full-bandwidth channels. -1 = coupling off
137  * ac3_coupling_start_tab[channel_mode-2][sample rate code][bit rate code]
138  *
139  * TODO: more testing for optimal parameters.
140  * multi-channel tests at 44.1kHz and 32kHz.
141  */
142 static const int8_t ac3_coupling_start_tab[6][3][19] = {
143 // 32 40 48 56 64 80 96 112 128 160 192 224 256 320 384 448 512 576 640
144 
145  // 2/0
146  { { 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 8, 11, 12, -1, -1, -1, -1, -1, -1 },
147  { 0, 0, 0, 0, 0, 0, 1, 3, 5, 7, 10, 12, 13, -1, -1, -1, -1, -1, -1 },
148  { 0, 0, 0, 0, 1, 2, 2, 9, 13, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
149 
150  // 3/0
151  { { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
152  { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
153  { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
154 
155  // 2/1 - untested
156  { { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
157  { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
158  { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
159 
160  // 3/1
161  { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
162  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
163  { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
164 
165  // 2/2 - untested
166  { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
167  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
168  { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
169 
170  // 3/2
171  { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 11, 12, 12, -1, -1 },
172  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 11, 12, 12, -1, -1 },
173  { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
174 };
175 
176 
177 /**
178  * Adjust the frame size to make the average bit rate match the target bit rate.
179  * This is only needed for 11025, 22050, and 44100 sample rates or any E-AC-3.
180  *
181  * @param s AC-3 encoder private context
182  */
184 {
185  while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
186  s->bits_written -= s->bit_rate;
187  s->samples_written -= s->sample_rate;
188  }
189  s->frame_size = s->frame_size_min +
190  2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
191  s->bits_written += s->frame_size * 8;
193 }
194 
195 
196 /**
197  * Set the initial coupling strategy parameters prior to coupling analysis.
198  *
199  * @param s AC-3 encoder private context
200  */
202 {
203  int blk, ch;
204  int got_cpl_snr;
205  int num_cpl_blocks;
206 
207  /* set coupling use flags for each block/channel */
208  /* TODO: turn coupling on/off and adjust start band based on bit usage */
209  for (blk = 0; blk < s->num_blocks; blk++) {
210  AC3Block *block = &s->blocks[blk];
211  for (ch = 1; ch <= s->fbw_channels; ch++)
212  block->channel_in_cpl[ch] = s->cpl_on;
213  }
214 
215  /* enable coupling for each block if at least 2 channels have coupling
216  enabled for that block */
217  got_cpl_snr = 0;
218  num_cpl_blocks = 0;
219  for (blk = 0; blk < s->num_blocks; blk++) {
220  AC3Block *block = &s->blocks[blk];
221  block->num_cpl_channels = 0;
222  for (ch = 1; ch <= s->fbw_channels; ch++)
223  block->num_cpl_channels += block->channel_in_cpl[ch];
224  block->cpl_in_use = block->num_cpl_channels > 1;
225  num_cpl_blocks += block->cpl_in_use;
226  if (!block->cpl_in_use) {
227  block->num_cpl_channels = 0;
228  for (ch = 1; ch <= s->fbw_channels; ch++)
229  block->channel_in_cpl[ch] = 0;
230  }
231 
232  block->new_cpl_strategy = !blk;
233  if (blk) {
234  for (ch = 1; ch <= s->fbw_channels; ch++) {
235  if (block->channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]) {
236  block->new_cpl_strategy = 1;
237  break;
238  }
239  }
240  }
241  block->new_cpl_leak = block->new_cpl_strategy;
242 
243  if (!blk || (block->cpl_in_use && !got_cpl_snr)) {
244  block->new_snr_offsets = 1;
245  if (block->cpl_in_use)
246  got_cpl_snr = 1;
247  } else {
248  block->new_snr_offsets = 0;
249  }
250  }
251  if (!num_cpl_blocks)
252  s->cpl_on = 0;
253 
254  /* set bandwidth for each channel */
255  for (blk = 0; blk < s->num_blocks; blk++) {
256  AC3Block *block = &s->blocks[blk];
257  for (ch = 1; ch <= s->fbw_channels; ch++) {
258  if (block->channel_in_cpl[ch])
259  block->end_freq[ch] = s->start_freq[CPL_CH];
260  else
261  block->end_freq[ch] = s->bandwidth_code * 3 + 73;
262  }
263  }
264 }
265 
266 
267 /**
268  * Apply stereo rematrixing to coefficients based on rematrixing flags.
269  *
270  * @param s AC-3 encoder private context
271  */
273 {
274  int nb_coefs;
275  int blk, bnd, i;
276  int start, end;
277  uint8_t *flags = NULL;
278 
279  if (!s->rematrixing_enabled)
280  return;
281 
282  for (blk = 0; blk < s->num_blocks; blk++) {
283  AC3Block *block = &s->blocks[blk];
284  if (block->new_rematrixing_strategy)
285  flags = block->rematrixing_flags;
286  nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);
287  for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
288  if (flags[bnd]) {
289  start = ff_ac3_rematrix_band_tab[bnd];
290  end = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
291  for (i = start; i < end; i++) {
292  int32_t lt = block->fixed_coef[1][i];
293  int32_t rt = block->fixed_coef[2][i];
294  block->fixed_coef[1][i] = (lt + rt) >> 1;
295  block->fixed_coef[2][i] = (lt - rt) >> 1;
296  }
297  }
298  }
299  }
300 }
301 
302 
303 /*
304  * Initialize exponent tables.
305  */
307 {
308  int expstr, i, grpsize;
309 
310  for (expstr = EXP_D15-1; expstr <= EXP_D45-1; expstr++) {
311  grpsize = 3 << expstr;
312  for (i = 12; i < 256; i++) {
313  exponent_group_tab[0][expstr][i] = (i + grpsize - 4) / grpsize;
314  exponent_group_tab[1][expstr][i] = (i ) / grpsize;
315  }
316  }
317  /* LFE */
318  exponent_group_tab[0][0][7] = 2;
319 
320  if (CONFIG_EAC3_ENCODER && s->eac3)
322 }
323 
324 
325 /*
326  * Extract exponents from the MDCT coefficients.
327  */
329 {
330  int ch = !s->cpl_on;
331  int chan_size = AC3_MAX_COEFS * s->num_blocks * (s->channels - ch + 1);
332  AC3Block *block = &s->blocks[0];
333 
334  s->ac3dsp.extract_exponents(block->exp[ch], block->fixed_coef[ch], chan_size);
335 }
336 
337 
338 /**
339  * Exponent Difference Threshold.
340  * New exponents are sent if their SAD exceed this number.
341  */
342 #define EXP_DIFF_THRESHOLD 500
343 
344 /**
345  * Table used to select exponent strategy based on exponent reuse block interval.
346  */
347 static const uint8_t exp_strategy_reuse_tab[4][6] = {
348  { EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
349  { EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
350  { EXP_D25, EXP_D25, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
351  { EXP_D45, EXP_D25, EXP_D25, EXP_D15, EXP_D15, EXP_D15 }
352 };
353 
354 /*
355  * Calculate exponent strategies for all channels.
356  * Array arrangement is reversed to simplify the per-channel calculation.
357  */
359 {
360  int ch, blk, blk1;
361 
362  for (ch = !s->cpl_on; ch <= s->fbw_channels; ch++) {
363  uint8_t *exp_strategy = s->exp_strategy[ch];
364  uint8_t *exp = s->blocks[0].exp[ch];
365  int exp_diff;
366 
367  /* estimate if the exponent variation & decide if they should be
368  reused in the next frame */
369  exp_strategy[0] = EXP_NEW;
370  exp += AC3_MAX_COEFS;
371  for (blk = 1; blk < s->num_blocks; blk++, exp += AC3_MAX_COEFS) {
372  if (ch == CPL_CH) {
373  if (!s->blocks[blk-1].cpl_in_use) {
374  exp_strategy[blk] = EXP_NEW;
375  continue;
376  } else if (!s->blocks[blk].cpl_in_use) {
377  exp_strategy[blk] = EXP_REUSE;
378  continue;
379  }
380  } else if (s->blocks[blk].channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]) {
381  exp_strategy[blk] = EXP_NEW;
382  continue;
383  }
384  exp_diff = s->mecc.sad[0](NULL, exp, exp - AC3_MAX_COEFS, 16, 16);
385  exp_strategy[blk] = EXP_REUSE;
386  if (ch == CPL_CH && exp_diff > (EXP_DIFF_THRESHOLD * (s->blocks[blk].end_freq[ch] - s->start_freq[ch]) / AC3_MAX_COEFS))
387  exp_strategy[blk] = EXP_NEW;
388  else if (ch > CPL_CH && exp_diff > EXP_DIFF_THRESHOLD)
389  exp_strategy[blk] = EXP_NEW;
390  }
391 
392  /* now select the encoding strategy type : if exponents are often
393  recoded, we use a coarse encoding */
394  blk = 0;
395  while (blk < s->num_blocks) {
396  blk1 = blk + 1;
397  while (blk1 < s->num_blocks && exp_strategy[blk1] == EXP_REUSE)
398  blk1++;
399  exp_strategy[blk] = exp_strategy_reuse_tab[s->num_blks_code][blk1-blk-1];
400  blk = blk1;
401  }
402  }
403  if (s->lfe_on) {
404  ch = s->lfe_channel;
405  s->exp_strategy[ch][0] = EXP_D15;
406  for (blk = 1; blk < s->num_blocks; blk++)
407  s->exp_strategy[ch][blk] = EXP_REUSE;
408  }
409 
410  /* for E-AC-3, determine frame exponent strategy */
411  if (CONFIG_EAC3_ENCODER && s->eac3)
413 }
414 
415 
416 /**
417  * Update the exponents so that they are the ones the decoder will decode.
418  *
419  * @param[in,out] exp array of exponents for 1 block in 1 channel
420  * @param nb_exps number of exponents in active bandwidth
421  * @param exp_strategy exponent strategy for the block
422  * @param cpl indicates if the block is in the coupling channel
423  */
424 static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy,
425  int cpl)
426 {
427  int nb_groups, i, k;
428 
429  nb_groups = exponent_group_tab[cpl][exp_strategy-1][nb_exps] * 3;
430 
431  /* for each group, compute the minimum exponent */
432  switch(exp_strategy) {
433  case EXP_D25:
434  for (i = 1, k = 1-cpl; i <= nb_groups; i++) {
435  uint8_t exp_min = exp[k];
436  if (exp[k+1] < exp_min)
437  exp_min = exp[k+1];
438  exp[i-cpl] = exp_min;
439  k += 2;
440  }
441  break;
442  case EXP_D45:
443  for (i = 1, k = 1-cpl; i <= nb_groups; i++) {
444  uint8_t exp_min = exp[k];
445  if (exp[k+1] < exp_min)
446  exp_min = exp[k+1];
447  if (exp[k+2] < exp_min)
448  exp_min = exp[k+2];
449  if (exp[k+3] < exp_min)
450  exp_min = exp[k+3];
451  exp[i-cpl] = exp_min;
452  k += 4;
453  }
454  break;
455  }
456 
457  /* constraint for DC exponent */
458  if (!cpl && exp[0] > 15)
459  exp[0] = 15;
460 
461  /* decrease the delta between each groups to within 2 so that they can be
462  differentially encoded */
463  for (i = 1; i <= nb_groups; i++)
464  exp[i] = FFMIN(exp[i], exp[i-1] + 2);
465  i--;
466  while (--i >= 0)
467  exp[i] = FFMIN(exp[i], exp[i+1] + 2);
468 
469  if (cpl)
470  exp[-1] = exp[0] & ~1;
471 
472  /* now we have the exponent values the decoder will see */
473  switch (exp_strategy) {
474  case EXP_D25:
475  for (i = nb_groups, k = (nb_groups * 2)-cpl; i > 0; i--) {
476  uint8_t exp1 = exp[i-cpl];
477  exp[k--] = exp1;
478  exp[k--] = exp1;
479  }
480  break;
481  case EXP_D45:
482  for (i = nb_groups, k = (nb_groups * 4)-cpl; i > 0; i--) {
483  exp[k] = exp[k-1] = exp[k-2] = exp[k-3] = exp[i-cpl];
484  k -= 4;
485  }
486  break;
487  }
488 }
489 
490 
491 /*
492  * Encode exponents from original extracted form to what the decoder will see.
493  * This copies and groups exponents based on exponent strategy and reduces
494  * deltas between adjacent exponent groups so that they can be differentially
495  * encoded.
496  */
498 {
499  int blk, blk1, ch, cpl;
500  uint8_t *exp, *exp_strategy;
501  int nb_coefs, num_reuse_blocks;
502 
503  for (ch = !s->cpl_on; ch <= s->channels; ch++) {
504  exp = s->blocks[0].exp[ch] + s->start_freq[ch];
505  exp_strategy = s->exp_strategy[ch];
506 
507  cpl = (ch == CPL_CH);
508  blk = 0;
509  while (blk < s->num_blocks) {
510  AC3Block *block = &s->blocks[blk];
511  if (cpl && !block->cpl_in_use) {
512  exp += AC3_MAX_COEFS;
513  blk++;
514  continue;
515  }
516  nb_coefs = block->end_freq[ch] - s->start_freq[ch];
517  blk1 = blk + 1;
518 
519  /* count the number of EXP_REUSE blocks after the current block
520  and set exponent reference block numbers */
521  s->exp_ref_block[ch][blk] = blk;
522  while (blk1 < s->num_blocks && exp_strategy[blk1] == EXP_REUSE) {
523  s->exp_ref_block[ch][blk1] = blk;
524  blk1++;
525  }
526  num_reuse_blocks = blk1 - blk - 1;
527 
528  /* for the EXP_REUSE case we select the min of the exponents */
529  s->ac3dsp.ac3_exponent_min(exp-s->start_freq[ch], num_reuse_blocks,
530  AC3_MAX_COEFS);
531 
532  encode_exponents_blk_ch(exp, nb_coefs, exp_strategy[blk], cpl);
533 
534  exp += AC3_MAX_COEFS * (num_reuse_blocks + 1);
535  blk = blk1;
536  }
537  }
538 
539  /* reference block numbers have been changed, so reset ref_bap_set */
540  s->ref_bap_set = 0;
541 }
542 
543 
544 /*
545  * Count exponent bits based on bandwidth, coupling, and exponent strategies.
546  */
548 {
549  int blk, ch;
550  int nb_groups, bit_count;
551 
552  bit_count = 0;
553  for (blk = 0; blk < s->num_blocks; blk++) {
554  AC3Block *block = &s->blocks[blk];
555  for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
556  int exp_strategy = s->exp_strategy[ch][blk];
557  int cpl = (ch == CPL_CH);
558  int nb_coefs = block->end_freq[ch] - s->start_freq[ch];
559 
560  if (exp_strategy == EXP_REUSE)
561  continue;
562 
563  nb_groups = exponent_group_tab[cpl][exp_strategy-1][nb_coefs];
564  bit_count += 4 + (nb_groups * 7);
565  }
566  }
567 
568  return bit_count;
569 }
570 
571 
572 /**
573  * Group exponents.
574  * 3 delta-encoded exponents are in each 7-bit group. The number of groups
575  * varies depending on exponent strategy and bandwidth.
576  *
577  * @param s AC-3 encoder private context
578  */
580 {
581  int blk, ch, i, cpl;
582  int group_size, nb_groups;
583  uint8_t *p;
584  int delta0, delta1, delta2;
585  int exp0, exp1;
586 
587  for (blk = 0; blk < s->num_blocks; blk++) {
588  AC3Block *block = &s->blocks[blk];
589  for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
590  int exp_strategy = s->exp_strategy[ch][blk];
591  if (exp_strategy == EXP_REUSE)
592  continue;
593  cpl = (ch == CPL_CH);
594  group_size = exp_strategy + (exp_strategy == EXP_D45);
595  nb_groups = exponent_group_tab[cpl][exp_strategy-1][block->end_freq[ch]-s->start_freq[ch]];
596  p = block->exp[ch] + s->start_freq[ch] - cpl;
597 
598  /* DC exponent */
599  exp1 = *p++;
600  block->grouped_exp[ch][0] = exp1;
601 
602  /* remaining exponents are delta encoded */
603  for (i = 1; i <= nb_groups; i++) {
604  /* merge three delta in one code */
605  exp0 = exp1;
606  exp1 = p[0];
607  p += group_size;
608  delta0 = exp1 - exp0 + 2;
609  av_assert2(delta0 >= 0 && delta0 <= 4);
610 
611  exp0 = exp1;
612  exp1 = p[0];
613  p += group_size;
614  delta1 = exp1 - exp0 + 2;
615  av_assert2(delta1 >= 0 && delta1 <= 4);
616 
617  exp0 = exp1;
618  exp1 = p[0];
619  p += group_size;
620  delta2 = exp1 - exp0 + 2;
621  av_assert2(delta2 >= 0 && delta2 <= 4);
622 
623  block->grouped_exp[ch][i] = ((delta0 * 5 + delta1) * 5) + delta2;
624  }
625  }
626  }
627 }
628 
629 
630 /**
631  * Calculate final exponents from the supplied MDCT coefficients and exponent shift.
632  * Extract exponents from MDCT coefficients, calculate exponent strategies,
633  * and encode final exponents.
634  *
635  * @param s AC-3 encoder private context
636  */
638 {
640 
642 
643  encode_exponents(s);
644 
645  emms_c();
646 }
647 
648 
649 /*
650  * Count frame bits that are based solely on fixed parameters.
651  * This only has to be run once when the encoder is initialized.
652  */
654 {
655  static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
656  int blk;
657  int frame_bits;
658 
659  /* assumptions:
660  * no dynamic range codes
661  * bit allocation parameters do not change between blocks
662  * no delta bit allocation
663  * no skipped data
664  * no auxiliary data
665  * no E-AC-3 metadata
666  */
667 
668  /* header */
669  frame_bits = 16; /* sync info */
670  if (s->eac3) {
671  /* bitstream info header */
672  frame_bits += 35;
673  frame_bits += 1 + 1;
674  if (s->num_blocks != 0x6)
675  frame_bits++;
676  frame_bits++;
677  /* audio frame header */
678  if (s->num_blocks == 6)
679  frame_bits += 2;
680  frame_bits += 10;
681  /* exponent strategy */
682  if (s->use_frame_exp_strategy)
683  frame_bits += 5 * s->fbw_channels;
684  else
685  frame_bits += s->num_blocks * 2 * s->fbw_channels;
686  if (s->lfe_on)
687  frame_bits += s->num_blocks;
688  /* converter exponent strategy */
689  if (s->num_blks_code != 0x3)
690  frame_bits++;
691  else
692  frame_bits += s->fbw_channels * 5;
693  /* snr offsets */
694  frame_bits += 10;
695  /* block start info */
696  if (s->num_blocks != 1)
697  frame_bits++;
698  } else {
699  frame_bits += 49;
700  frame_bits += frame_bits_inc[s->channel_mode];
701  }
702 
703  /* audio blocks */
704  for (blk = 0; blk < s->num_blocks; blk++) {
705  if (!s->eac3) {
706  /* block switch flags */
707  frame_bits += s->fbw_channels;
708 
709  /* dither flags */
710  frame_bits += s->fbw_channels;
711  }
712 
713  /* dynamic range */
714  frame_bits++;
715 
716  /* spectral extension */
717  if (s->eac3)
718  frame_bits++;
719 
720  if (!s->eac3) {
721  /* exponent strategy */
722  frame_bits += 2 * s->fbw_channels;
723  if (s->lfe_on)
724  frame_bits++;
725 
726  /* bit allocation params */
727  frame_bits++;
728  if (!blk)
729  frame_bits += 2 + 2 + 2 + 2 + 3;
730  }
731 
732  /* converter snr offset */
733  if (s->eac3)
734  frame_bits++;
735 
736  if (!s->eac3) {
737  /* delta bit allocation */
738  frame_bits++;
739 
740  /* skipped data */
741  frame_bits++;
742  }
743  }
744 
745  /* auxiliary data */
746  frame_bits++;
747 
748  /* CRC */
749  frame_bits += 1 + 16;
750 
751  s->frame_bits_fixed = frame_bits;
752 }
753 
754 
755 /*
756  * Initialize bit allocation.
757  * Set default parameter codes and calculate parameter values.
758  */
760 {
761  int ch;
762 
763  /* init default parameters */
764  s->slow_decay_code = 2;
765  s->fast_decay_code = 1;
766  s->slow_gain_code = 1;
767  s->db_per_bit_code = s->eac3 ? 2 : 3;
768  s->floor_code = 7;
769  for (ch = 0; ch <= s->channels; ch++)
770  s->fast_gain_code[ch] = 4;
771 
772  /* initial snr offset */
773  s->coarse_snr_offset = 40;
774 
775  /* compute real values */
776  /* currently none of these values change during encoding, so we can just
777  set them once at initialization */
783  s->bit_alloc.cpl_fast_leak = 0;
784  s->bit_alloc.cpl_slow_leak = 0;
785 
787 }
788 
789 
790 /*
791  * Count the bits used to encode the frame, minus exponents and mantissas.
792  * Bits based on fixed parameters have already been counted, so now we just
793  * have to add the bits based on parameters that change during encoding.
794  */
796 {
797  AC3EncOptions *opt = &s->options;
798  int blk, ch;
799  int frame_bits = 0;
800 
801  /* header */
802  if (s->eac3) {
803  if (opt->eac3_mixing_metadata) {
805  frame_bits += 2;
806  if (s->has_center)
807  frame_bits += 6;
808  if (s->has_surround)
809  frame_bits += 6;
810  frame_bits += s->lfe_on;
811  frame_bits += 1 + 1 + 2;
813  frame_bits++;
814  frame_bits++;
815  }
816  if (opt->eac3_info_metadata) {
817  frame_bits += 3 + 1 + 1;
819  frame_bits += 2 + 2;
820  if (s->channel_mode >= AC3_CHMODE_2F2R)
821  frame_bits += 2;
822  frame_bits++;
823  if (opt->audio_production_info)
824  frame_bits += 5 + 2 + 1;
825  frame_bits++;
826  }
827  /* coupling */
828  if (s->channel_mode > AC3_CHMODE_MONO) {
829  frame_bits++;
830  for (blk = 1; blk < s->num_blocks; blk++) {
831  AC3Block *block = &s->blocks[blk];
832  frame_bits++;
833  if (block->new_cpl_strategy)
834  frame_bits++;
835  }
836  }
837  /* coupling exponent strategy */
838  if (s->cpl_on) {
839  if (s->use_frame_exp_strategy) {
840  frame_bits += 5 * s->cpl_on;
841  } else {
842  for (blk = 0; blk < s->num_blocks; blk++)
843  frame_bits += 2 * s->blocks[blk].cpl_in_use;
844  }
845  }
846  } else {
847  if (opt->audio_production_info)
848  frame_bits += 7;
849  if (s->bitstream_id == 6) {
850  if (opt->extended_bsi_1)
851  frame_bits += 14;
852  if (opt->extended_bsi_2)
853  frame_bits += 14;
854  }
855  }
856 
857  /* audio blocks */
858  for (blk = 0; blk < s->num_blocks; blk++) {
859  AC3Block *block = &s->blocks[blk];
860 
861  /* coupling strategy */
862  if (!s->eac3)
863  frame_bits++;
864  if (block->new_cpl_strategy) {
865  if (!s->eac3)
866  frame_bits++;
867  if (block->cpl_in_use) {
868  if (s->eac3)
869  frame_bits++;
870  if (!s->eac3 || s->channel_mode != AC3_CHMODE_STEREO)
871  frame_bits += s->fbw_channels;
873  frame_bits++;
874  frame_bits += 4 + 4;
875  if (s->eac3)
876  frame_bits++;
877  else
878  frame_bits += s->num_cpl_subbands - 1;
879  }
880  }
881 
882  /* coupling coordinates */
883  if (block->cpl_in_use) {
884  for (ch = 1; ch <= s->fbw_channels; ch++) {
885  if (block->channel_in_cpl[ch]) {
886  if (!s->eac3 || block->new_cpl_coords[ch] != 2)
887  frame_bits++;
888  if (block->new_cpl_coords[ch]) {
889  frame_bits += 2;
890  frame_bits += (4 + 4) * s->num_cpl_bands;
891  }
892  }
893  }
894  }
895 
896  /* stereo rematrixing */
897  if (s->channel_mode == AC3_CHMODE_STEREO) {
898  if (!s->eac3 || blk > 0)
899  frame_bits++;
900  if (s->blocks[blk].new_rematrixing_strategy)
901  frame_bits += block->num_rematrixing_bands;
902  }
903 
904  /* bandwidth codes & gain range */
905  for (ch = 1; ch <= s->fbw_channels; ch++) {
906  if (s->exp_strategy[ch][blk] != EXP_REUSE) {
907  if (!block->channel_in_cpl[ch])
908  frame_bits += 6;
909  frame_bits += 2;
910  }
911  }
912 
913  /* coupling exponent strategy */
914  if (!s->eac3 && block->cpl_in_use)
915  frame_bits += 2;
916 
917  /* snr offsets and fast gain codes */
918  if (!s->eac3) {
919  frame_bits++;
920  if (block->new_snr_offsets)
921  frame_bits += 6 + (s->channels + block->cpl_in_use) * (4 + 3);
922  }
923 
924  /* coupling leak info */
925  if (block->cpl_in_use) {
926  if (!s->eac3 || block->new_cpl_leak != 2)
927  frame_bits++;
928  if (block->new_cpl_leak)
929  frame_bits += 3 + 3;
930  }
931  }
932 
933  s->frame_bits = s->frame_bits_fixed + frame_bits;
934 }
935 
936 
937 /*
938  * Calculate masking curve based on the final exponents.
939  * Also calculate the power spectral densities to use in future calculations.
940  */
942 {
943  int blk, ch;
944 
945  for (blk = 0; blk < s->num_blocks; blk++) {
946  AC3Block *block = &s->blocks[blk];
947  for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
948  /* We only need psd and mask for calculating bap.
949  Since we currently do not calculate bap when exponent
950  strategy is EXP_REUSE we do not need to calculate psd or mask. */
951  if (s->exp_strategy[ch][blk] != EXP_REUSE) {
952  ff_ac3_bit_alloc_calc_psd(block->exp[ch], s->start_freq[ch],
953  block->end_freq[ch], block->psd[ch],
954  block->band_psd[ch]);
956  s->start_freq[ch], block->end_freq[ch],
958  ch == s->lfe_channel,
959  DBA_NONE, 0, NULL, NULL, NULL,
960  block->mask[ch]);
961  }
962  }
963  }
964 }
965 
966 
967 /*
968  * Ensure that bap for each block and channel point to the current bap_buffer.
969  * They may have been switched during the bit allocation search.
970  */
972 {
973  int blk, ch;
974  uint8_t *ref_bap;
975 
976  if (s->ref_bap[0][0] == s->bap_buffer && s->ref_bap_set)
977  return;
978 
979  ref_bap = s->bap_buffer;
980  for (ch = 0; ch <= s->channels; ch++) {
981  for (blk = 0; blk < s->num_blocks; blk++)
982  s->ref_bap[ch][blk] = ref_bap + AC3_MAX_COEFS * s->exp_ref_block[ch][blk];
983  ref_bap += AC3_MAX_COEFS * s->num_blocks;
984  }
985  s->ref_bap_set = 1;
986 }
987 
988 
989 /**
990  * Initialize mantissa counts.
991  * These are set so that they are padded to the next whole group size when bits
992  * are counted in compute_mantissa_size.
993  *
994  * @param[in,out] mant_cnt running counts for each bap value for each block
995  */
996 static void count_mantissa_bits_init(uint16_t mant_cnt[AC3_MAX_BLOCKS][16])
997 {
998  int blk;
999 
1000  for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
1001  memset(mant_cnt[blk], 0, sizeof(mant_cnt[blk]));
1002  mant_cnt[blk][1] = mant_cnt[blk][2] = 2;
1003  mant_cnt[blk][4] = 1;
1004  }
1005 }
1006 
1007 
1008 /**
1009  * Update mantissa bit counts for all blocks in 1 channel in a given bandwidth
1010  * range.
1011  *
1012  * @param s AC-3 encoder private context
1013  * @param ch channel index
1014  * @param[in,out] mant_cnt running counts for each bap value for each block
1015  * @param start starting coefficient bin
1016  * @param end ending coefficient bin
1017  */
1019  uint16_t mant_cnt[AC3_MAX_BLOCKS][16],
1020  int start, int end)
1021 {
1022  int blk;
1023 
1024  for (blk = 0; blk < s->num_blocks; blk++) {
1025  AC3Block *block = &s->blocks[blk];
1026  if (ch == CPL_CH && !block->cpl_in_use)
1027  continue;
1028  s->ac3dsp.update_bap_counts(mant_cnt[blk],
1029  s->ref_bap[ch][blk] + start,
1030  FFMIN(end, block->end_freq[ch]) - start);
1031  }
1032 }
1033 
1034 
1035 /*
1036  * Count the number of mantissa bits in the frame based on the bap values.
1037  */
1039 {
1040  int ch, max_end_freq;
1041  LOCAL_ALIGNED_16(uint16_t, mant_cnt, [AC3_MAX_BLOCKS], [16]);
1042 
1043  count_mantissa_bits_init(mant_cnt);
1044 
1045  max_end_freq = s->bandwidth_code * 3 + 73;
1046  for (ch = !s->cpl_enabled; ch <= s->channels; ch++)
1047  count_mantissa_bits_update_ch(s, ch, mant_cnt, s->start_freq[ch],
1048  max_end_freq);
1049 
1050  return s->ac3dsp.compute_mantissa_size(mant_cnt);
1051 }
1052 
1053 
1054 /**
1055  * Run the bit allocation with a given SNR offset.
1056  * This calculates the bit allocation pointers that will be used to determine
1057  * the quantization of each mantissa.
1058  *
1059  * @param s AC-3 encoder private context
1060  * @param snr_offset SNR offset, 0 to 1023
1061  * @return the number of bits needed for mantissas if the given SNR offset is
1062  * is used.
1063  */
1064 static int bit_alloc(AC3EncodeContext *s, int snr_offset)
1065 {
1066  int blk, ch;
1067 
1068  snr_offset = (snr_offset - 240) << 2;
1069 
1070  reset_block_bap(s);
1071  for (blk = 0; blk < s->num_blocks; blk++) {
1072  AC3Block *block = &s->blocks[blk];
1073 
1074  for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1075  /* Currently the only bit allocation parameters which vary across
1076  blocks within a frame are the exponent values. We can take
1077  advantage of that by reusing the bit allocation pointers
1078  whenever we reuse exponents. */
1079  if (s->exp_strategy[ch][blk] != EXP_REUSE) {
1080  s->ac3dsp.bit_alloc_calc_bap(block->mask[ch], block->psd[ch],
1081  s->start_freq[ch], block->end_freq[ch],
1082  snr_offset, s->bit_alloc.floor,
1083  ff_ac3_bap_tab, s->ref_bap[ch][blk]);
1084  }
1085  }
1086  }
1087  return count_mantissa_bits(s);
1088 }
1089 
1090 
1091 /*
1092  * Constant bitrate bit allocation search.
1093  * Find the largest SNR offset that will allow data to fit in the frame.
1094  */
1096 {
1097  int ch;
1098  int bits_left;
1099  int snr_offset, snr_incr;
1100 
1101  bits_left = 8 * s->frame_size - (s->frame_bits + s->exponent_bits);
1102  if (bits_left < 0)
1103  return AVERROR(EINVAL);
1104 
1105  snr_offset = s->coarse_snr_offset << 4;
1106 
1107  /* if previous frame SNR offset was 1023, check if current frame can also
1108  use SNR offset of 1023. if so, skip the search. */
1109  if ((snr_offset | s->fine_snr_offset[1]) == 1023) {
1110  if (bit_alloc(s, 1023) <= bits_left)
1111  return 0;
1112  }
1113 
1114  while (snr_offset >= 0 &&
1115  bit_alloc(s, snr_offset) > bits_left) {
1116  snr_offset -= 64;
1117  }
1118  if (snr_offset < 0)
1119  return AVERROR(EINVAL);
1120 
1121  FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
1122  for (snr_incr = 64; snr_incr > 0; snr_incr >>= 2) {
1123  while (snr_offset + snr_incr <= 1023 &&
1124  bit_alloc(s, snr_offset + snr_incr) <= bits_left) {
1125  snr_offset += snr_incr;
1126  FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
1127  }
1128  }
1129  FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
1130  reset_block_bap(s);
1131 
1132  s->coarse_snr_offset = snr_offset >> 4;
1133  for (ch = !s->cpl_on; ch <= s->channels; ch++)
1134  s->fine_snr_offset[ch] = snr_offset & 0xF;
1135 
1136  return 0;
1137 }
1138 
1139 
1140 /*
1141  * Perform bit allocation search.
1142  * Finds the SNR offset value that maximizes quality and fits in the specified
1143  * frame size. Output is the SNR offset and a set of bit allocation pointers
1144  * used to quantize the mantissas.
1145  */
1147 {
1148  count_frame_bits(s);
1149 
1151 
1152  bit_alloc_masking(s);
1153 
1154  return cbr_bit_allocation(s);
1155 }
1156 
1157 
1158 /**
1159  * Symmetric quantization on 'levels' levels.
1160  *
1161  * @param c unquantized coefficient
1162  * @param e exponent
1163  * @param levels number of quantization levels
1164  * @return quantized coefficient
1165  */
1166 static inline int sym_quant(int c, int e, int levels)
1167 {
1168  int v = (((levels * c) >> (24 - e)) + levels) >> 1;
1169  av_assert2(v >= 0 && v < levels);
1170  return v;
1171 }
1172 
1173 
1174 /**
1175  * Asymmetric quantization on 2^qbits levels.
1176  *
1177  * @param c unquantized coefficient
1178  * @param e exponent
1179  * @param qbits number of quantization bits
1180  * @return quantized coefficient
1181  */
1182 static inline int asym_quant(int c, int e, int qbits)
1183 {
1184  int m;
1185 
1186  c = (((c * (1<<e)) >> (24 - qbits)) + 1) >> 1;
1187  m = (1 << (qbits-1));
1188  if (c >= m)
1189  c = m - 1;
1190  av_assert2(c >= -m);
1191  return c;
1192 }
1193 
1194 
1195 /**
1196  * Quantize a set of mantissas for a single channel in a single block.
1197  *
1198  * @param s Mantissa count context
1199  * @param fixed_coef unquantized fixed-point coefficients
1200  * @param exp exponents
1201  * @param bap bit allocation pointer indices
1202  * @param[out] qmant quantized coefficients
1203  * @param start_freq starting coefficient bin
1204  * @param end_freq ending coefficient bin
1205  */
1206 static void quantize_mantissas_blk_ch(AC3Mant *s, int32_t *fixed_coef,
1207  uint8_t *exp, uint8_t *bap,
1208  int16_t *qmant, int start_freq,
1209  int end_freq)
1210 {
1211  int i;
1212 
1213  for (i = start_freq; i < end_freq; i++) {
1214  int c = fixed_coef[i];
1215  int e = exp[i];
1216  int v = bap[i];
1217  if (v)
1218  switch (v) {
1219  case 1:
1220  v = sym_quant(c, e, 3);
1221  switch (s->mant1_cnt) {
1222  case 0:
1223  s->qmant1_ptr = &qmant[i];
1224  v = 9 * v;
1225  s->mant1_cnt = 1;
1226  break;
1227  case 1:
1228  *s->qmant1_ptr += 3 * v;
1229  s->mant1_cnt = 2;
1230  v = 128;
1231  break;
1232  default:
1233  *s->qmant1_ptr += v;
1234  s->mant1_cnt = 0;
1235  v = 128;
1236  break;
1237  }
1238  break;
1239  case 2:
1240  v = sym_quant(c, e, 5);
1241  switch (s->mant2_cnt) {
1242  case 0:
1243  s->qmant2_ptr = &qmant[i];
1244  v = 25 * v;
1245  s->mant2_cnt = 1;
1246  break;
1247  case 1:
1248  *s->qmant2_ptr += 5 * v;
1249  s->mant2_cnt = 2;
1250  v = 128;
1251  break;
1252  default:
1253  *s->qmant2_ptr += v;
1254  s->mant2_cnt = 0;
1255  v = 128;
1256  break;
1257  }
1258  break;
1259  case 3:
1260  v = sym_quant(c, e, 7);
1261  break;
1262  case 4:
1263  v = sym_quant(c, e, 11);
1264  switch (s->mant4_cnt) {
1265  case 0:
1266  s->qmant4_ptr = &qmant[i];
1267  v = 11 * v;
1268  s->mant4_cnt = 1;
1269  break;
1270  default:
1271  *s->qmant4_ptr += v;
1272  s->mant4_cnt = 0;
1273  v = 128;
1274  break;
1275  }
1276  break;
1277  case 5:
1278  v = sym_quant(c, e, 15);
1279  break;
1280  case 14:
1281  v = asym_quant(c, e, 14);
1282  break;
1283  case 15:
1284  v = asym_quant(c, e, 16);
1285  break;
1286  default:
1287  v = asym_quant(c, e, v - 1);
1288  break;
1289  }
1290  qmant[i] = v;
1291  }
1292 }
1293 
1294 
1295 /**
1296  * Quantize mantissas using coefficients, exponents, and bit allocation pointers.
1297  *
1298  * @param s AC-3 encoder private context
1299  */
1301 {
1302  int blk, ch, ch0=0, got_cpl;
1303 
1304  for (blk = 0; blk < s->num_blocks; blk++) {
1305  AC3Block *block = &s->blocks[blk];
1306  AC3Mant m = { 0 };
1307 
1308  got_cpl = !block->cpl_in_use;
1309  for (ch = 1; ch <= s->channels; ch++) {
1310  if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) {
1311  ch0 = ch - 1;
1312  ch = CPL_CH;
1313  got_cpl = 1;
1314  }
1315  quantize_mantissas_blk_ch(&m, block->fixed_coef[ch],
1316  s->blocks[s->exp_ref_block[ch][blk]].exp[ch],
1317  s->ref_bap[ch][blk], block->qmant[ch],
1318  s->start_freq[ch], block->end_freq[ch]);
1319  if (ch == CPL_CH)
1320  ch = ch0;
1321  }
1322  }
1323 }
1324 
1325 
1326 /*
1327  * Write the AC-3 frame header to the output bitstream.
1328  */
1330 {
1331  AC3EncOptions *opt = &s->options;
1332 
1333  put_bits(&s->pb, 16, 0x0b77); /* frame header */
1334  put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
1335  put_bits(&s->pb, 2, s->bit_alloc.sr_code);
1336  put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min) / 2);
1337  put_bits(&s->pb, 5, s->bitstream_id);
1338  put_bits(&s->pb, 3, s->bitstream_mode);
1339  put_bits(&s->pb, 3, s->channel_mode);
1340  if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
1341  put_bits(&s->pb, 2, s->center_mix_level);
1342  if (s->channel_mode & 0x04)
1343  put_bits(&s->pb, 2, s->surround_mix_level);
1344  if (s->channel_mode == AC3_CHMODE_STEREO)
1345  put_bits(&s->pb, 2, opt->dolby_surround_mode);
1346  put_bits(&s->pb, 1, s->lfe_on); /* LFE */
1347  put_bits(&s->pb, 5, -opt->dialogue_level);
1348  put_bits(&s->pb, 1, 0); /* no compression control word */
1349  put_bits(&s->pb, 1, 0); /* no lang code */
1350  put_bits(&s->pb, 1, opt->audio_production_info);
1351  if (opt->audio_production_info) {
1352  put_bits(&s->pb, 5, opt->mixing_level - 80);
1353  put_bits(&s->pb, 2, opt->room_type);
1354  }
1355  put_bits(&s->pb, 1, opt->copyright);
1356  put_bits(&s->pb, 1, opt->original);
1357  if (s->bitstream_id == 6) {
1358  /* alternate bit stream syntax */
1359  put_bits(&s->pb, 1, opt->extended_bsi_1);
1360  if (opt->extended_bsi_1) {
1361  put_bits(&s->pb, 2, opt->preferred_stereo_downmix);
1362  put_bits(&s->pb, 3, s->ltrt_center_mix_level);
1363  put_bits(&s->pb, 3, s->ltrt_surround_mix_level);
1364  put_bits(&s->pb, 3, s->loro_center_mix_level);
1365  put_bits(&s->pb, 3, s->loro_surround_mix_level);
1366  }
1367  put_bits(&s->pb, 1, opt->extended_bsi_2);
1368  if (opt->extended_bsi_2) {
1369  put_bits(&s->pb, 2, opt->dolby_surround_ex_mode);
1370  put_bits(&s->pb, 2, opt->dolby_headphone_mode);
1371  put_bits(&s->pb, 1, opt->ad_converter_type);
1372  put_bits(&s->pb, 9, 0); /* xbsi2 and encinfo : reserved */
1373  }
1374  } else {
1375  put_bits(&s->pb, 1, 0); /* no time code 1 */
1376  put_bits(&s->pb, 1, 0); /* no time code 2 */
1377  }
1378  put_bits(&s->pb, 1, 0); /* no additional bit stream info */
1379 }
1380 
1381 
1382 /*
1383  * Write one audio block to the output bitstream.
1384  */
1386 {
1387  int ch, i, baie, bnd, got_cpl, av_uninit(ch0);
1388  AC3Block *block = &s->blocks[blk];
1389 
1390  /* block switching */
1391  if (!s->eac3) {
1392  for (ch = 0; ch < s->fbw_channels; ch++)
1393  put_bits(&s->pb, 1, 0);
1394  }
1395 
1396  /* dither flags */
1397  if (!s->eac3) {
1398  for (ch = 0; ch < s->fbw_channels; ch++)
1399  put_bits(&s->pb, 1, 1);
1400  }
1401 
1402  /* dynamic range codes */
1403  put_bits(&s->pb, 1, 0);
1404 
1405  /* spectral extension */
1406  if (s->eac3)
1407  put_bits(&s->pb, 1, 0);
1408 
1409  /* channel coupling */
1410  if (!s->eac3)
1411  put_bits(&s->pb, 1, block->new_cpl_strategy);
1412  if (block->new_cpl_strategy) {
1413  if (!s->eac3)
1414  put_bits(&s->pb, 1, block->cpl_in_use);
1415  if (block->cpl_in_use) {
1416  int start_sub, end_sub;
1417  if (s->eac3)
1418  put_bits(&s->pb, 1, 0); /* enhanced coupling */
1419  if (!s->eac3 || s->channel_mode != AC3_CHMODE_STEREO) {
1420  for (ch = 1; ch <= s->fbw_channels; ch++)
1421  put_bits(&s->pb, 1, block->channel_in_cpl[ch]);
1422  }
1423  if (s->channel_mode == AC3_CHMODE_STEREO)
1424  put_bits(&s->pb, 1, 0); /* phase flags in use */
1425  start_sub = (s->start_freq[CPL_CH] - 37) / 12;
1426  end_sub = (s->cpl_end_freq - 37) / 12;
1427  put_bits(&s->pb, 4, start_sub);
1428  put_bits(&s->pb, 4, end_sub - 3);
1429  /* coupling band structure */
1430  if (s->eac3) {
1431  put_bits(&s->pb, 1, 0); /* use default */
1432  } else {
1433  for (bnd = start_sub+1; bnd < end_sub; bnd++)
1435  }
1436  }
1437  }
1438 
1439  /* coupling coordinates */
1440  if (block->cpl_in_use) {
1441  for (ch = 1; ch <= s->fbw_channels; ch++) {
1442  if (block->channel_in_cpl[ch]) {
1443  if (!s->eac3 || block->new_cpl_coords[ch] != 2)
1444  put_bits(&s->pb, 1, block->new_cpl_coords[ch]);
1445  if (block->new_cpl_coords[ch]) {
1446  put_bits(&s->pb, 2, block->cpl_master_exp[ch]);
1447  for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
1448  put_bits(&s->pb, 4, block->cpl_coord_exp [ch][bnd]);
1449  put_bits(&s->pb, 4, block->cpl_coord_mant[ch][bnd]);
1450  }
1451  }
1452  }
1453  }
1454  }
1455 
1456  /* stereo rematrixing */
1457  if (s->channel_mode == AC3_CHMODE_STEREO) {
1458  if (!s->eac3 || blk > 0)
1459  put_bits(&s->pb, 1, block->new_rematrixing_strategy);
1460  if (block->new_rematrixing_strategy) {
1461  /* rematrixing flags */
1462  for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++)
1463  put_bits(&s->pb, 1, block->rematrixing_flags[bnd]);
1464  }
1465  }
1466 
1467  /* exponent strategy */
1468  if (!s->eac3) {
1469  for (ch = !block->cpl_in_use; ch <= s->fbw_channels; ch++)
1470  put_bits(&s->pb, 2, s->exp_strategy[ch][blk]);
1471  if (s->lfe_on)
1472  put_bits(&s->pb, 1, s->exp_strategy[s->lfe_channel][blk]);
1473  }
1474 
1475  /* bandwidth */
1476  for (ch = 1; ch <= s->fbw_channels; ch++) {
1477  if (s->exp_strategy[ch][blk] != EXP_REUSE && !block->channel_in_cpl[ch])
1478  put_bits(&s->pb, 6, s->bandwidth_code);
1479  }
1480 
1481  /* exponents */
1482  for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1483  int nb_groups;
1484  int cpl = (ch == CPL_CH);
1485 
1486  if (s->exp_strategy[ch][blk] == EXP_REUSE)
1487  continue;
1488 
1489  /* DC exponent */
1490  put_bits(&s->pb, 4, block->grouped_exp[ch][0] >> cpl);
1491 
1492  /* exponent groups */
1493  nb_groups = exponent_group_tab[cpl][s->exp_strategy[ch][blk]-1][block->end_freq[ch]-s->start_freq[ch]];
1494  for (i = 1; i <= nb_groups; i++)
1495  put_bits(&s->pb, 7, block->grouped_exp[ch][i]);
1496 
1497  /* gain range info */
1498  if (ch != s->lfe_channel && !cpl)
1499  put_bits(&s->pb, 2, 0);
1500  }
1501 
1502  /* bit allocation info */
1503  if (!s->eac3) {
1504  baie = (blk == 0);
1505  put_bits(&s->pb, 1, baie);
1506  if (baie) {
1507  put_bits(&s->pb, 2, s->slow_decay_code);
1508  put_bits(&s->pb, 2, s->fast_decay_code);
1509  put_bits(&s->pb, 2, s->slow_gain_code);
1510  put_bits(&s->pb, 2, s->db_per_bit_code);
1511  put_bits(&s->pb, 3, s->floor_code);
1512  }
1513  }
1514 
1515  /* snr offset */
1516  if (!s->eac3) {
1517  put_bits(&s->pb, 1, block->new_snr_offsets);
1518  if (block->new_snr_offsets) {
1519  put_bits(&s->pb, 6, s->coarse_snr_offset);
1520  for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1521  put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
1522  put_bits(&s->pb, 3, s->fast_gain_code[ch]);
1523  }
1524  }
1525  } else {
1526  put_bits(&s->pb, 1, 0); /* no converter snr offset */
1527  }
1528 
1529  /* coupling leak */
1530  if (block->cpl_in_use) {
1531  if (!s->eac3 || block->new_cpl_leak != 2)
1532  put_bits(&s->pb, 1, block->new_cpl_leak);
1533  if (block->new_cpl_leak) {
1534  put_bits(&s->pb, 3, s->bit_alloc.cpl_fast_leak);
1535  put_bits(&s->pb, 3, s->bit_alloc.cpl_slow_leak);
1536  }
1537  }
1538 
1539  if (!s->eac3) {
1540  put_bits(&s->pb, 1, 0); /* no delta bit allocation */
1541  put_bits(&s->pb, 1, 0); /* no data to skip */
1542  }
1543 
1544  /* mantissas */
1545  got_cpl = !block->cpl_in_use;
1546  for (ch = 1; ch <= s->channels; ch++) {
1547  int b, q;
1548 
1549  if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) {
1550  ch0 = ch - 1;
1551  ch = CPL_CH;
1552  got_cpl = 1;
1553  }
1554  for (i = s->start_freq[ch]; i < block->end_freq[ch]; i++) {
1555  q = block->qmant[ch][i];
1556  b = s->ref_bap[ch][blk][i];
1557  switch (b) {
1558  case 0: break;
1559  case 1: if (q != 128) put_bits (&s->pb, 5, q); break;
1560  case 2: if (q != 128) put_bits (&s->pb, 7, q); break;
1561  case 3: put_sbits(&s->pb, 3, q); break;
1562  case 4: if (q != 128) put_bits (&s->pb, 7, q); break;
1563  case 14: put_sbits(&s->pb, 14, q); break;
1564  case 15: put_sbits(&s->pb, 16, q); break;
1565  default: put_sbits(&s->pb, b-1, q); break;
1566  }
1567  }
1568  if (ch == CPL_CH)
1569  ch = ch0;
1570  }
1571 }
1572 
1573 
1574 /** CRC-16 Polynomial */
1575 #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
1576 
1577 
1578 static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
1579 {
1580  unsigned int c;
1581 
1582  c = 0;
1583  while (a) {
1584  if (a & 1)
1585  c ^= b;
1586  a = a >> 1;
1587  b = b << 1;
1588  if (b & (1 << 16))
1589  b ^= poly;
1590  }
1591  return c;
1592 }
1593 
1594 
1595 static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
1596 {
1597  unsigned int r;
1598  r = 1;
1599  while (n) {
1600  if (n & 1)
1601  r = mul_poly(r, a, poly);
1602  a = mul_poly(a, a, poly);
1603  n >>= 1;
1604  }
1605  return r;
1606 }
1607 
1608 
1609 /*
1610  * Fill the end of the frame with 0's and compute the two CRCs.
1611  */
1613 {
1614  const AVCRC *crc_ctx = av_crc_get_table(AV_CRC_16_ANSI);
1615  int frame_size_58, pad_bytes, crc1, crc2_partial, crc2, crc_inv;
1616  uint8_t *frame;
1617 
1618  frame_size_58 = ((s->frame_size >> 2) + (s->frame_size >> 4)) << 1;
1619 
1620  /* pad the remainder of the frame with zeros */
1621  av_assert2(s->frame_size * 8 - put_bits_count(&s->pb) >= 18);
1622  flush_put_bits(&s->pb);
1623  frame = s->pb.buf;
1624  pad_bytes = s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
1625  av_assert2(pad_bytes >= 0);
1626  if (pad_bytes > 0)
1627  memset(put_bits_ptr(&s->pb), 0, pad_bytes);
1628 
1629  if (s->eac3) {
1630  /* compute crc2 */
1631  crc2_partial = av_crc(crc_ctx, 0, frame + 2, s->frame_size - 5);
1632  } else {
1633  /* compute crc1 */
1634  /* this is not so easy because it is at the beginning of the data... */
1635  crc1 = av_bswap16(av_crc(crc_ctx, 0, frame + 4, frame_size_58 - 4));
1636  crc_inv = s->crc_inv[s->frame_size > s->frame_size_min];
1637  crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
1638  AV_WB16(frame + 2, crc1);
1639 
1640  /* compute crc2 */
1641  crc2_partial = av_crc(crc_ctx, 0, frame + frame_size_58,
1642  s->frame_size - frame_size_58 - 3);
1643  }
1644  crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
1645  /* ensure crc2 does not match sync word by flipping crcrsv bit if needed */
1646  if (crc2 == 0x770B) {
1647  frame[s->frame_size - 3] ^= 0x1;
1648  crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
1649  }
1650  crc2 = av_bswap16(crc2);
1651  AV_WB16(frame + s->frame_size - 2, crc2);
1652 }
1653 
1654 
1655 /**
1656  * Write the frame to the output bitstream.
1657  *
1658  * @param s AC-3 encoder private context
1659  * @param frame output data buffer
1660  */
1662 {
1663  int blk;
1664 
1666 
1667  s->output_frame_header(s);
1668 
1669  for (blk = 0; blk < s->num_blocks; blk++)
1670  output_audio_block(s, blk);
1671 
1672  output_frame_end(s);
1673 }
1674 
1675 
1677 {
1678 #ifdef DEBUG
1679  AVCodecContext *avctx = s->avctx;
1680  AC3EncOptions *opt = &s->options;
1681  char strbuf[32];
1682 
1683  switch (s->bitstream_id) {
1684  case 6: av_strlcpy(strbuf, "AC-3 (alt syntax)", 32); break;
1685  case 8: av_strlcpy(strbuf, "AC-3 (standard)", 32); break;
1686  case 9: av_strlcpy(strbuf, "AC-3 (dnet half-rate)", 32); break;
1687  case 10: av_strlcpy(strbuf, "AC-3 (dnet quater-rate)", 32); break;
1688  case 16: av_strlcpy(strbuf, "E-AC-3 (enhanced)", 32); break;
1689  default: snprintf(strbuf, 32, "ERROR");
1690  }
1691  ff_dlog(avctx, "bitstream_id: %s (%d)\n", strbuf, s->bitstream_id);
1692  ff_dlog(avctx, "sample_fmt: %s\n", av_get_sample_fmt_name(avctx->sample_fmt));
1693  av_get_channel_layout_string(strbuf, 32, s->channels, avctx->channel_layout);
1694  ff_dlog(avctx, "channel_layout: %s\n", strbuf);
1695  ff_dlog(avctx, "sample_rate: %d\n", s->sample_rate);
1696  ff_dlog(avctx, "bit_rate: %d\n", s->bit_rate);
1697  ff_dlog(avctx, "blocks/frame: %d (code=%d)\n", s->num_blocks, s->num_blks_code);
1698  if (s->cutoff)
1699  ff_dlog(avctx, "cutoff: %d\n", s->cutoff);
1700 
1701  ff_dlog(avctx, "per_frame_metadata: %s\n",
1702  opt->allow_per_frame_metadata?"on":"off");
1703  if (s->has_center)
1704  ff_dlog(avctx, "center_mixlev: %0.3f (%d)\n", opt->center_mix_level,
1705  s->center_mix_level);
1706  else
1707  ff_dlog(avctx, "center_mixlev: {not written}\n");
1708  if (s->has_surround)
1709  ff_dlog(avctx, "surround_mixlev: %0.3f (%d)\n", opt->surround_mix_level,
1710  s->surround_mix_level);
1711  else
1712  ff_dlog(avctx, "surround_mixlev: {not written}\n");
1713  if (opt->audio_production_info) {
1714  ff_dlog(avctx, "mixing_level: %ddB\n", opt->mixing_level);
1715  switch (opt->room_type) {
1716  case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1717  case AC3ENC_OPT_LARGE_ROOM: av_strlcpy(strbuf, "large", 32); break;
1718  case AC3ENC_OPT_SMALL_ROOM: av_strlcpy(strbuf, "small", 32); break;
1719  default: snprintf(strbuf, 32, "ERROR (%d)", opt->room_type);
1720  }
1721  ff_dlog(avctx, "room_type: %s\n", strbuf);
1722  } else {
1723  ff_dlog(avctx, "mixing_level: {not written}\n");
1724  ff_dlog(avctx, "room_type: {not written}\n");
1725  }
1726  ff_dlog(avctx, "copyright: %s\n", opt->copyright?"on":"off");
1727  ff_dlog(avctx, "dialnorm: %ddB\n", opt->dialogue_level);
1728  if (s->channel_mode == AC3_CHMODE_STEREO) {
1729  switch (opt->dolby_surround_mode) {
1730  case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1731  case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break;
1732  case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break;
1733  default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_mode);
1734  }
1735  ff_dlog(avctx, "dsur_mode: %s\n", strbuf);
1736  } else {
1737  ff_dlog(avctx, "dsur_mode: {not written}\n");
1738  }
1739  ff_dlog(avctx, "original: %s\n", opt->original?"on":"off");
1740 
1741  if (s->bitstream_id == 6) {
1742  if (opt->extended_bsi_1) {
1743  switch (opt->preferred_stereo_downmix) {
1744  case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1745  case AC3ENC_OPT_DOWNMIX_LTRT: av_strlcpy(strbuf, "ltrt", 32); break;
1746  case AC3ENC_OPT_DOWNMIX_LORO: av_strlcpy(strbuf, "loro", 32); break;
1747  default: snprintf(strbuf, 32, "ERROR (%d)", opt->preferred_stereo_downmix);
1748  }
1749  ff_dlog(avctx, "dmix_mode: %s\n", strbuf);
1750  ff_dlog(avctx, "ltrt_cmixlev: %0.3f (%d)\n",
1752  ff_dlog(avctx, "ltrt_surmixlev: %0.3f (%d)\n",
1754  ff_dlog(avctx, "loro_cmixlev: %0.3f (%d)\n",
1756  ff_dlog(avctx, "loro_surmixlev: %0.3f (%d)\n",
1758  } else {
1759  ff_dlog(avctx, "extended bitstream info 1: {not written}\n");
1760  }
1761  if (opt->extended_bsi_2) {
1762  switch (opt->dolby_surround_ex_mode) {
1763  case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1764  case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break;
1765  case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break;
1766  default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_ex_mode);
1767  }
1768  ff_dlog(avctx, "dsurex_mode: %s\n", strbuf);
1769  switch (opt->dolby_headphone_mode) {
1770  case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1771  case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break;
1772  case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break;
1773  default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_headphone_mode);
1774  }
1775  ff_dlog(avctx, "dheadphone_mode: %s\n", strbuf);
1776 
1777  switch (opt->ad_converter_type) {
1778  case AC3ENC_OPT_ADCONV_STANDARD: av_strlcpy(strbuf, "standard", 32); break;
1779  case AC3ENC_OPT_ADCONV_HDCD: av_strlcpy(strbuf, "hdcd", 32); break;
1780  default: snprintf(strbuf, 32, "ERROR (%d)", opt->ad_converter_type);
1781  }
1782  ff_dlog(avctx, "ad_conv_type: %s\n", strbuf);
1783  } else {
1784  ff_dlog(avctx, "extended bitstream info 2: {not written}\n");
1785  }
1786  }
1787 #endif
1788 }
1789 
1790 
1791 #define FLT_OPTION_THRESHOLD 0.01
1792 
1793 static int validate_float_option(float v, const float *v_list, int v_list_size)
1794 {
1795  int i;
1796 
1797  for (i = 0; i < v_list_size; i++) {
1798  if (v < (v_list[i] + FLT_OPTION_THRESHOLD) &&
1799  v > (v_list[i] - FLT_OPTION_THRESHOLD))
1800  break;
1801  }
1802  if (i == v_list_size)
1803  return -1;
1804 
1805  return i;
1806 }
1807 
1808 
1809 static void validate_mix_level(void *log_ctx, const char *opt_name,
1810  float *opt_param, const float *list,
1811  int list_size, int default_value, int min_value,
1812  int *ctx_param)
1813 {
1814  int mixlev = validate_float_option(*opt_param, list, list_size);
1815  if (mixlev < min_value) {
1816  mixlev = default_value;
1817  if (*opt_param >= 0.0) {
1818  av_log(log_ctx, AV_LOG_WARNING, "requested %s is not valid. using "
1819  "default value: %0.3f\n", opt_name, list[mixlev]);
1820  }
1821  }
1822  *opt_param = list[mixlev];
1823  *ctx_param = mixlev;
1824 }
1825 
1826 
1827 /**
1828  * Validate metadata options as set by AVOption system.
1829  * These values can optionally be changed per-frame.
1830  *
1831  * @param s AC-3 encoder private context
1832  */
1834 {
1835  AVCodecContext *avctx = s->avctx;
1836  AC3EncOptions *opt = &s->options;
1837 
1838  opt->audio_production_info = 0;
1839  opt->extended_bsi_1 = 0;
1840  opt->extended_bsi_2 = 0;
1841  opt->eac3_mixing_metadata = 0;
1842  opt->eac3_info_metadata = 0;
1843 
1844  /* determine mixing metadata / xbsi1 use */
1846  opt->extended_bsi_1 = 1;
1847  opt->eac3_mixing_metadata = 1;
1848  }
1849  if (s->has_center &&
1850  (opt->ltrt_center_mix_level >= 0 || opt->loro_center_mix_level >= 0)) {
1851  opt->extended_bsi_1 = 1;
1852  opt->eac3_mixing_metadata = 1;
1853  }
1854  if (s->has_surround &&
1855  (opt->ltrt_surround_mix_level >= 0 || opt->loro_surround_mix_level >= 0)) {
1856  opt->extended_bsi_1 = 1;
1857  opt->eac3_mixing_metadata = 1;
1858  }
1859 
1860  if (s->eac3) {
1861  /* determine info metadata use */
1863  opt->eac3_info_metadata = 1;
1864  if (opt->copyright != AC3ENC_OPT_NONE || opt->original != AC3ENC_OPT_NONE)
1865  opt->eac3_info_metadata = 1;
1866  if (s->channel_mode == AC3_CHMODE_STEREO &&
1868  opt->eac3_info_metadata = 1;
1870  opt->eac3_info_metadata = 1;
1871  if (opt->mixing_level != AC3ENC_OPT_NONE || opt->room_type != AC3ENC_OPT_NONE ||
1873  opt->audio_production_info = 1;
1874  opt->eac3_info_metadata = 1;
1875  }
1876  } else {
1877  /* determine audio production info use */
1878  if (opt->mixing_level != AC3ENC_OPT_NONE || opt->room_type != AC3ENC_OPT_NONE)
1879  opt->audio_production_info = 1;
1880 
1881  /* determine xbsi2 use */
1883  opt->extended_bsi_2 = 1;
1885  opt->extended_bsi_2 = 1;
1886  if (opt->ad_converter_type != AC3ENC_OPT_NONE)
1887  opt->extended_bsi_2 = 1;
1888  }
1889 
1890  /* validate AC-3 mixing levels */
1891  if (!s->eac3) {
1892  if (s->has_center) {
1893  validate_mix_level(avctx, "center_mix_level", &opt->center_mix_level,
1895  &s->center_mix_level);
1896  }
1897  if (s->has_surround) {
1898  validate_mix_level(avctx, "surround_mix_level", &opt->surround_mix_level,
1900  &s->surround_mix_level);
1901  }
1902  }
1903 
1904  /* validate extended bsi 1 / mixing metadata */
1905  if (opt->extended_bsi_1 || opt->eac3_mixing_metadata) {
1906  /* default preferred stereo downmix */
1909  if (!s->eac3 || s->has_center) {
1910  /* validate Lt/Rt center mix level */
1911  validate_mix_level(avctx, "ltrt_center_mix_level",
1913  EXTMIXLEV_NUM_OPTIONS, 5, 0,
1914  &s->ltrt_center_mix_level);
1915  /* validate Lo/Ro center mix level */
1916  validate_mix_level(avctx, "loro_center_mix_level",
1918  EXTMIXLEV_NUM_OPTIONS, 5, 0,
1919  &s->loro_center_mix_level);
1920  }
1921  if (!s->eac3 || s->has_surround) {
1922  /* validate Lt/Rt surround mix level */
1923  validate_mix_level(avctx, "ltrt_surround_mix_level",
1925  EXTMIXLEV_NUM_OPTIONS, 6, 3,
1927  /* validate Lo/Ro surround mix level */
1928  validate_mix_level(avctx, "loro_surround_mix_level",
1930  EXTMIXLEV_NUM_OPTIONS, 6, 3,
1932  }
1933  }
1934 
1935  /* validate audio service type / channels combination */
1937  avctx->channels == 1) ||
1941  && avctx->channels > 1)) {
1942  av_log(avctx, AV_LOG_ERROR, "invalid audio service type for the "
1943  "specified number of channels\n");
1944  return AVERROR(EINVAL);
1945  }
1946 
1947  /* validate extended bsi 2 / info metadata */
1948  if (opt->extended_bsi_2 || opt->eac3_info_metadata) {
1949  /* default dolby headphone mode */
1952  /* default dolby surround ex mode */
1955  /* default A/D converter type */
1956  if (opt->ad_converter_type == AC3ENC_OPT_NONE)
1958  }
1959 
1960  /* copyright & original defaults */
1961  if (!s->eac3 || opt->eac3_info_metadata) {
1962  /* default copyright */
1963  if (opt->copyright == AC3ENC_OPT_NONE)
1964  opt->copyright = AC3ENC_OPT_OFF;
1965  /* default original */
1966  if (opt->original == AC3ENC_OPT_NONE)
1967  opt->original = AC3ENC_OPT_ON;
1968  }
1969 
1970  /* dolby surround mode default */
1971  if (!s->eac3 || opt->eac3_info_metadata) {
1974  }
1975 
1976  /* validate audio production info */
1977  if (opt->audio_production_info) {
1978  if (opt->mixing_level == AC3ENC_OPT_NONE) {
1979  av_log(avctx, AV_LOG_ERROR, "mixing_level must be set if "
1980  "room_type is set\n");
1981  return AVERROR(EINVAL);
1982  }
1983  if (opt->mixing_level < 80) {
1984  av_log(avctx, AV_LOG_ERROR, "invalid mixing level. must be between "
1985  "80dB and 111dB\n");
1986  return AVERROR(EINVAL);
1987  }
1988  /* default room type */
1989  if (opt->room_type == AC3ENC_OPT_NONE)
1991  }
1992 
1993  /* set bitstream id for alternate bitstream syntax */
1994  if (!s->eac3 && (opt->extended_bsi_1 || opt->extended_bsi_2)) {
1995  if (s->bitstream_id > 8 && s->bitstream_id < 11) {
1996  static int warn_once = 1;
1997  if (warn_once) {
1998  av_log(avctx, AV_LOG_WARNING, "alternate bitstream syntax is "
1999  "not compatible with reduced samplerates. writing of "
2000  "extended bitstream information will be disabled.\n");
2001  warn_once = 0;
2002  }
2003  } else {
2004  s->bitstream_id = 6;
2005  }
2006  }
2007 
2008  return 0;
2009 }
2010 
2011 
2012 /**
2013  * Finalize encoding and free any memory allocated by the encoder.
2014  *
2015  * @param avctx Codec context
2016  */
2018 {
2019  int blk, ch;
2020  AC3EncodeContext *s = avctx->priv_data;
2021 
2023  if (s->planar_samples)
2024  for (ch = 0; ch < s->channels; ch++)
2025  av_freep(&s->planar_samples[ch]);
2026  av_freep(&s->planar_samples);
2027  av_freep(&s->bap_buffer);
2028  av_freep(&s->bap1_buffer);
2031  av_freep(&s->exp_buffer);
2033  av_freep(&s->psd_buffer);
2035  av_freep(&s->mask_buffer);
2036  av_freep(&s->qmant_buffer);
2039  av_freep(&s->fdsp);
2040  for (blk = 0; blk < s->num_blocks; blk++) {
2041  AC3Block *block = &s->blocks[blk];
2042  av_freep(&block->mdct_coef);
2043  av_freep(&block->fixed_coef);
2044  av_freep(&block->exp);
2045  av_freep(&block->grouped_exp);
2046  av_freep(&block->psd);
2047  av_freep(&block->band_psd);
2048  av_freep(&block->mask);
2049  av_freep(&block->qmant);
2050  av_freep(&block->cpl_coord_exp);
2051  av_freep(&block->cpl_coord_mant);
2052  }
2053 
2054  s->mdct_end(s);
2055 
2056  return 0;
2057 }
2058 
2059 
2060 /*
2061  * Set channel information during initialization.
2062  */
2064  uint64_t *channel_layout)
2065 {
2066  int ch_layout;
2067 
2069  return AVERROR(EINVAL);
2070  if (*channel_layout > 0x7FF)
2071  return AVERROR(EINVAL);
2072  ch_layout = *channel_layout;
2073  if (!ch_layout)
2074  ch_layout = av_get_default_channel_layout(channels);
2075 
2076  s->lfe_on = !!(ch_layout & AV_CH_LOW_FREQUENCY);
2077  s->channels = channels;
2078  s->fbw_channels = channels - s->lfe_on;
2079  s->lfe_channel = s->lfe_on ? s->fbw_channels + 1 : -1;
2080  if (s->lfe_on)
2081  ch_layout -= AV_CH_LOW_FREQUENCY;
2082 
2083  switch (ch_layout) {
2087  case AV_CH_LAYOUT_2_1: s->channel_mode = AC3_CHMODE_2F1R; break;
2089  case AV_CH_LAYOUT_QUAD:
2090  case AV_CH_LAYOUT_2_2: s->channel_mode = AC3_CHMODE_2F2R; break;
2091  case AV_CH_LAYOUT_5POINT0:
2093  default:
2094  return AVERROR(EINVAL);
2095  }
2096  s->has_center = (s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO;
2097  s->has_surround = s->channel_mode & 0x04;
2098 
2100  *channel_layout = ch_layout;
2101  if (s->lfe_on)
2102  *channel_layout |= AV_CH_LOW_FREQUENCY;
2103 
2104  return 0;
2105 }
2106 
2107 
2109 {
2110  AVCodecContext *avctx = s->avctx;
2111  int i, ret, max_sr;
2112 
2113  /* validate channel layout */
2114  if (!avctx->channel_layout) {
2115  av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
2116  "encoder will guess the layout, but it "
2117  "might be incorrect.\n");
2118  }
2119  ret = set_channel_info(s, avctx->channels, &avctx->channel_layout);
2120  if (ret) {
2121  av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
2122  return ret;
2123  }
2124 
2125  /* validate sample rate */
2126  /* note: max_sr could be changed from 2 to 5 for E-AC-3 once we find a
2127  decoder that supports half sample rate so we can validate that
2128  the generated files are correct. */
2129  max_sr = s->eac3 ? 2 : 8;
2130  for (i = 0; i <= max_sr; i++) {
2131  if ((ff_ac3_sample_rate_tab[i % 3] >> (i / 3)) == avctx->sample_rate)
2132  break;
2133  }
2134  if (i > max_sr) {
2135  av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
2136  return AVERROR(EINVAL);
2137  }
2138  s->sample_rate = avctx->sample_rate;
2139  s->bit_alloc.sr_shift = i / 3;
2140  s->bit_alloc.sr_code = i % 3;
2141  s->bitstream_id = s->eac3 ? 16 : 8 + s->bit_alloc.sr_shift;
2142 
2143  /* select a default bit rate if not set by the user */
2144  if (!avctx->bit_rate) {
2145  switch (s->fbw_channels) {
2146  case 1: avctx->bit_rate = 96000; break;
2147  case 2: avctx->bit_rate = 192000; break;
2148  case 3: avctx->bit_rate = 320000; break;
2149  case 4: avctx->bit_rate = 384000; break;
2150  case 5: avctx->bit_rate = 448000; break;
2151  }
2152  }
2153 
2154  /* validate bit rate */
2155  if (s->eac3) {
2156  int max_br, min_br, wpf, min_br_code;
2157  int num_blks_code, num_blocks, frame_samples;
2158  long long min_br_dist;
2159 
2160  /* calculate min/max bitrate */
2161  /* TODO: More testing with 3 and 2 blocks. All E-AC-3 samples I've
2162  found use either 6 blocks or 1 block, even though 2 or 3 blocks
2163  would work as far as the bit rate is concerned. */
2164  for (num_blks_code = 3; num_blks_code >= 0; num_blks_code--) {
2165  num_blocks = ((int[]){ 1, 2, 3, 6 })[num_blks_code];
2166  frame_samples = AC3_BLOCK_SIZE * num_blocks;
2167  max_br = 2048 * s->sample_rate / frame_samples * 16;
2168  min_br = ((s->sample_rate + (frame_samples-1)) / frame_samples) * 16;
2169  if (avctx->bit_rate <= max_br)
2170  break;
2171  }
2172  if (avctx->bit_rate < min_br || avctx->bit_rate > max_br) {
2173  av_log(avctx, AV_LOG_ERROR, "invalid bit rate. must be %d to %d "
2174  "for this sample rate\n", min_br, max_br);
2175  return AVERROR(EINVAL);
2176  }
2177  s->num_blks_code = num_blks_code;
2178  s->num_blocks = num_blocks;
2179 
2180  /* calculate words-per-frame for the selected bitrate */
2181  wpf = (avctx->bit_rate / 16) * frame_samples / s->sample_rate;
2182  av_assert1(wpf > 0 && wpf <= 2048);
2183 
2184  /* find the closest AC-3 bitrate code to the selected bitrate.
2185  this is needed for lookup tables for bandwidth and coupling
2186  parameter selection */
2187  min_br_code = -1;
2188  min_br_dist = INT64_MAX;
2189  for (i = 0; i < 19; i++) {
2190  long long br_dist = llabs(ff_ac3_bitrate_tab[i] * 1000 - avctx->bit_rate);
2191  if (br_dist < min_br_dist) {
2192  min_br_dist = br_dist;
2193  min_br_code = i;
2194  }
2195  }
2196 
2197  /* make sure the minimum frame size is below the average frame size */
2198  s->frame_size_code = min_br_code << 1;
2199  while (wpf > 1 && wpf * s->sample_rate / AC3_FRAME_SIZE * 16 > avctx->bit_rate)
2200  wpf--;
2201  s->frame_size_min = 2 * wpf;
2202  } else {
2203  int best_br = 0, best_code = 0;
2204  long long best_diff = INT64_MAX;
2205  for (i = 0; i < 19; i++) {
2206  int br = (ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift) * 1000;
2207  long long diff = llabs(br - avctx->bit_rate);
2208  if (diff < best_diff) {
2209  best_br = br;
2210  best_code = i;
2211  best_diff = diff;
2212  }
2213  if (!best_diff)
2214  break;
2215  }
2216  avctx->bit_rate = best_br;
2217  s->frame_size_code = best_code << 1;
2219  s->num_blks_code = 0x3;
2220  s->num_blocks = 6;
2221  }
2222  s->bit_rate = avctx->bit_rate;
2223  s->frame_size = s->frame_size_min;
2224 
2225  /* validate cutoff */
2226  if (avctx->cutoff < 0) {
2227  av_log(avctx, AV_LOG_ERROR, "invalid cutoff frequency\n");
2228  return AVERROR(EINVAL);
2229  }
2230  s->cutoff = avctx->cutoff;
2231  if (s->cutoff > (s->sample_rate >> 1))
2232  s->cutoff = s->sample_rate >> 1;
2233 
2234  ret = ff_ac3_validate_metadata(s);
2235  if (ret)
2236  return ret;
2237 
2240 
2243 
2244  return 0;
2245 }
2246 
2247 
2248 /*
2249  * Set bandwidth for all channels.
2250  * The user can optionally supply a cutoff frequency. Otherwise an appropriate
2251  * default value will be used.
2252  */
2254 {
2255  int blk, ch, av_uninit(cpl_start);
2256 
2257  if (s->cutoff) {
2258  /* calculate bandwidth based on user-specified cutoff frequency */
2259  int fbw_coeffs;
2260  fbw_coeffs = s->cutoff * 2 * AC3_MAX_COEFS / s->sample_rate;
2261  s->bandwidth_code = av_clip((fbw_coeffs - 73) / 3, 0, 60);
2262  } else {
2263  /* use default bandwidth setting */
2265  }
2266 
2267  /* set number of coefficients for each channel */
2268  for (ch = 1; ch <= s->fbw_channels; ch++) {
2269  s->start_freq[ch] = 0;
2270  for (blk = 0; blk < s->num_blocks; blk++)
2271  s->blocks[blk].end_freq[ch] = s->bandwidth_code * 3 + 73;
2272  }
2273  /* LFE channel always has 7 coefs */
2274  if (s->lfe_on) {
2275  s->start_freq[s->lfe_channel] = 0;
2276  for (blk = 0; blk < s->num_blocks; blk++)
2277  s->blocks[blk].end_freq[ch] = 7;
2278  }
2279 
2280  /* initialize coupling strategy */
2281  if (s->cpl_enabled) {
2282  if (s->options.cpl_start != AC3ENC_OPT_AUTO) {
2283  cpl_start = s->options.cpl_start;
2284  } else {
2286  if (cpl_start < 0) {
2288  s->cpl_enabled = 0;
2289  else
2290  cpl_start = 15;
2291  }
2292  }
2293  }
2294  if (s->cpl_enabled) {
2295  int i, cpl_start_band, cpl_end_band;
2296  uint8_t *cpl_band_sizes = s->cpl_band_sizes;
2297 
2298  cpl_end_band = s->bandwidth_code / 4 + 3;
2299  cpl_start_band = av_clip(cpl_start, 0, FFMIN(cpl_end_band-1, 15));
2300 
2301  s->num_cpl_subbands = cpl_end_band - cpl_start_band;
2302 
2303  s->num_cpl_bands = 1;
2304  *cpl_band_sizes = 12;
2305  for (i = cpl_start_band + 1; i < cpl_end_band; i++) {
2307  *cpl_band_sizes += 12;
2308  } else {
2309  s->num_cpl_bands++;
2310  cpl_band_sizes++;
2311  *cpl_band_sizes = 12;
2312  }
2313  }
2314 
2315  s->start_freq[CPL_CH] = cpl_start_band * 12 + 37;
2316  s->cpl_end_freq = cpl_end_band * 12 + 37;
2317  for (blk = 0; blk < s->num_blocks; blk++)
2318  s->blocks[blk].end_freq[CPL_CH] = s->cpl_end_freq;
2319  }
2320 }
2321 
2322 
2324 {
2325  AVCodecContext *avctx = s->avctx;
2326  int blk, ch;
2327  int channels = s->channels + 1; /* includes coupling channel */
2328  int channel_blocks = channels * s->num_blocks;
2329  int total_coefs = AC3_MAX_COEFS * channel_blocks;
2330 
2331  if (s->allocate_sample_buffers(s))
2332  goto alloc_fail;
2333 
2334  FF_ALLOC_ARRAY_OR_GOTO(avctx, s->bap_buffer, total_coefs,
2335  sizeof(*s->bap_buffer), alloc_fail);
2336  FF_ALLOC_ARRAY_OR_GOTO(avctx, s->bap1_buffer, total_coefs,
2337  sizeof(*s->bap1_buffer), alloc_fail);
2338  FF_ALLOCZ_ARRAY_OR_GOTO(avctx, s->mdct_coef_buffer, total_coefs,
2339  sizeof(*s->mdct_coef_buffer), alloc_fail);
2340  FF_ALLOC_ARRAY_OR_GOTO(avctx, s->exp_buffer, total_coefs,
2341  sizeof(*s->exp_buffer), alloc_fail);
2342  FF_ALLOC_ARRAY_OR_GOTO(avctx, s->grouped_exp_buffer, channel_blocks, 128 *
2343  sizeof(*s->grouped_exp_buffer), alloc_fail);
2344  FF_ALLOC_ARRAY_OR_GOTO(avctx, s->psd_buffer, total_coefs,
2345  sizeof(*s->psd_buffer), alloc_fail);
2346  FF_ALLOC_ARRAY_OR_GOTO(avctx, s->band_psd_buffer, channel_blocks, 64 *
2347  sizeof(*s->band_psd_buffer), alloc_fail);
2348  FF_ALLOC_ARRAY_OR_GOTO(avctx, s->mask_buffer, channel_blocks, 64 *
2349  sizeof(*s->mask_buffer), alloc_fail);
2350  FF_ALLOC_ARRAY_OR_GOTO(avctx, s->qmant_buffer, total_coefs,
2351  sizeof(*s->qmant_buffer), alloc_fail);
2352  if (s->cpl_enabled) {
2353  FF_ALLOC_ARRAY_OR_GOTO(avctx, s->cpl_coord_exp_buffer, channel_blocks, 16 *
2354  sizeof(*s->cpl_coord_exp_buffer), alloc_fail);
2355  FF_ALLOC_ARRAY_OR_GOTO(avctx, s->cpl_coord_mant_buffer, channel_blocks, 16 *
2356  sizeof(*s->cpl_coord_mant_buffer), alloc_fail);
2357  }
2358  for (blk = 0; blk < s->num_blocks; blk++) {
2359  AC3Block *block = &s->blocks[blk];
2360  FF_ALLOCZ_ARRAY_OR_GOTO(avctx, block->mdct_coef, channels, sizeof(*block->mdct_coef),
2361  alloc_fail);
2362  FF_ALLOCZ_ARRAY_OR_GOTO(avctx, block->exp, channels, sizeof(*block->exp),
2363  alloc_fail);
2364  FF_ALLOCZ_ARRAY_OR_GOTO(avctx, block->grouped_exp, channels, sizeof(*block->grouped_exp),
2365  alloc_fail);
2366  FF_ALLOCZ_ARRAY_OR_GOTO(avctx, block->psd, channels, sizeof(*block->psd),
2367  alloc_fail);
2368  FF_ALLOCZ_ARRAY_OR_GOTO(avctx, block->band_psd, channels, sizeof(*block->band_psd),
2369  alloc_fail);
2370  FF_ALLOCZ_ARRAY_OR_GOTO(avctx, block->mask, channels, sizeof(*block->mask),
2371  alloc_fail);
2372  FF_ALLOCZ_ARRAY_OR_GOTO(avctx, block->qmant, channels, sizeof(*block->qmant),
2373  alloc_fail);
2374  if (s->cpl_enabled) {
2375  FF_ALLOCZ_ARRAY_OR_GOTO(avctx, block->cpl_coord_exp, channels, sizeof(*block->cpl_coord_exp),
2376  alloc_fail);
2377  FF_ALLOCZ_ARRAY_OR_GOTO(avctx, block->cpl_coord_mant, channels, sizeof(*block->cpl_coord_mant),
2378  alloc_fail);
2379  }
2380 
2381  for (ch = 0; ch < channels; ch++) {
2382  /* arrangement: block, channel, coeff */
2383  block->grouped_exp[ch] = &s->grouped_exp_buffer[128 * (blk * channels + ch)];
2384  block->psd[ch] = &s->psd_buffer [AC3_MAX_COEFS * (blk * channels + ch)];
2385  block->band_psd[ch] = &s->band_psd_buffer [64 * (blk * channels + ch)];
2386  block->mask[ch] = &s->mask_buffer [64 * (blk * channels + ch)];
2387  block->qmant[ch] = &s->qmant_buffer [AC3_MAX_COEFS * (blk * channels + ch)];
2388  if (s->cpl_enabled) {
2389  block->cpl_coord_exp[ch] = &s->cpl_coord_exp_buffer [16 * (blk * channels + ch)];
2390  block->cpl_coord_mant[ch] = &s->cpl_coord_mant_buffer[16 * (blk * channels + ch)];
2391  }
2392 
2393  /* arrangement: channel, block, coeff */
2394  block->exp[ch] = &s->exp_buffer [AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
2395  block->mdct_coef[ch] = &s->mdct_coef_buffer [AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
2396  }
2397  }
2398 
2399  if (!s->fixed_point) {
2400  FF_ALLOCZ_ARRAY_OR_GOTO(avctx, s->fixed_coef_buffer, total_coefs,
2401  sizeof(*s->fixed_coef_buffer), alloc_fail);
2402  for (blk = 0; blk < s->num_blocks; blk++) {
2403  AC3Block *block = &s->blocks[blk];
2404  FF_ALLOCZ_ARRAY_OR_GOTO(avctx, block->fixed_coef, channels,
2405  sizeof(*block->fixed_coef), alloc_fail);
2406  for (ch = 0; ch < channels; ch++)
2407  block->fixed_coef[ch] = &s->fixed_coef_buffer[AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
2408  }
2409  } else {
2410  for (blk = 0; blk < s->num_blocks; blk++) {
2411  AC3Block *block = &s->blocks[blk];
2412  FF_ALLOCZ_ARRAY_OR_GOTO(avctx, block->fixed_coef, channels,
2413  sizeof(*block->fixed_coef), alloc_fail);
2414  for (ch = 0; ch < channels; ch++)
2415  block->fixed_coef[ch] = (int32_t *)block->mdct_coef[ch];
2416  }
2417  }
2418 
2419  return 0;
2420 alloc_fail:
2421  return AVERROR(ENOMEM);
2422 }
2423 
2424 
2426 {
2427  AC3EncodeContext *s = avctx->priv_data;
2428  int ret, frame_size_58;
2429 
2430  s->avctx = avctx;
2431 
2432  s->eac3 = avctx->codec_id == AV_CODEC_ID_EAC3;
2433 
2434  ret = validate_options(s);
2435  if (ret)
2436  return ret;
2437 
2438  avctx->frame_size = AC3_BLOCK_SIZE * s->num_blocks;
2440 
2441  s->bitstream_mode = avctx->audio_service_type;
2443  s->bitstream_mode = 0x7;
2444 
2445  s->bits_written = 0;
2446  s->samples_written = 0;
2447 
2448  /* calculate crc_inv for both possible frame sizes */
2449  frame_size_58 = (( s->frame_size >> 2) + ( s->frame_size >> 4)) << 1;
2450  s->crc_inv[0] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
2451  if (s->bit_alloc.sr_code == 1) {
2452  frame_size_58 = (((s->frame_size+2) >> 2) + ((s->frame_size+2) >> 4)) << 1;
2453  s->crc_inv[1] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
2454  }
2455 
2456  /* set function pointers */
2461  } else if (CONFIG_AC3_ENCODER || CONFIG_EAC3_ENCODER) {
2465  }
2466  if (CONFIG_EAC3_ENCODER && s->eac3)
2468  else
2470 
2471  set_bandwidth(s);
2472 
2473  exponent_init(s);
2474 
2475  bit_alloc_init(s);
2476 
2477  ret = s->mdct_init(s);
2478  if (ret)
2479  goto init_fail;
2480 
2481  ret = allocate_buffers(s);
2482  if (ret)
2483  goto init_fail;
2484 
2485  ff_audiodsp_init(&s->adsp);
2486  ff_me_cmp_init(&s->mecc, avctx);
2488 
2489  dprint_options(s);
2490 
2491  return 0;
2492 init_fail:
2493  ff_ac3_encode_close(avctx);
2494  return ret;
2495 }
static void count_mantissa_bits_init(uint16_t mant_cnt[AC3_MAX_BLOCKS][16])
Initialize mantissa counts.
Definition: ac3enc.c:996
av_cold void ff_me_cmp_init(MECmpContext *c, AVCodecContext *avctx)
Definition: me_cmp.c:1035
uint8_t new_rematrixing_strategy
send new rematrixing flags in this block
Definition: ac3enc.h:145
#define NULL
Definition: coverity.c:32
uint8_t exp_strategy[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS]
exponent strategies
Definition: ac3enc.h:251
int eac3_mixing_metadata
Definition: ac3enc.h:120
const uint8_t ff_ac3_bap_tab[64]
Definition: ac3tab.c:270
const char * s
Definition: avisynth_c.h:768
#define AC3_MAX_CODED_FRAME_SIZE
Definition: ac3.h:30
AVFloatDSPContext * fdsp
Definition: ac3enc.h:168
int dialogue_level
Definition: ac3enc.h:100
void(* mdct_end)(struct AC3EncodeContext *s)
Definition: ac3enc.h:259
static av_cold int set_channel_info(AC3EncodeContext *s, int channels, uint64_t *channel_layout)
Definition: ac3enc.c:2063
static void ac3_output_frame_header(AC3EncodeContext *s)
Definition: ac3enc.c:1329
#define FF_ALLOCZ_ARRAY_OR_GOTO(ctx, p, nelem, elsize, label)
Definition: internal.h:167
int db_per_bit_code
dB/bit code (dbpbcod)
Definition: ac3enc.h:226
static const uint8_t exp_strategy_reuse_tab[4][6]
Table used to select exponent strategy based on exponent reuse block interval.
Definition: ac3enc.c:347
int slow_decay_code
slow decay code (sdcycod)
Definition: ac3enc.h:224
Encoding Options used by AVOption.
Definition: ac3enc.h:98
const uint8_t ff_ac3_slow_decay_tab[4]
Definition: ac3tab.c:280
void(* update_bap_counts)(uint16_t mant_cnt[16], uint8_t *bap, int len)
Update bap counts using the supplied array of bap.
Definition: ac3dsp.h:117
int ff_ac3_fixed_allocate_sample_buffers(AC3EncodeContext *s)
float loro_surround_mix_level
Definition: ac3enc.h:115
static void put_sbits(PutBitContext *pb, int n, int32_t value)
Definition: put_bits.h:240
static void compute_exp_strategy(AC3EncodeContext *s)
Definition: ac3enc.c:358
int channel_coupling
Definition: ac3enc.h:126
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
Definition: j2kenc.c:207
static int asym_quant(int c, int e, int qbits)
Asymmetric quantization on 2^qbits levels.
Definition: ac3enc.c:1182
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
int dolby_surround_ex_mode
Definition: ac3enc.h:117
static uint8_t exponent_group_tab[2][3][256]
LUT for number of exponent groups.
Definition: ac3enc.c:75
int64_t bit_rate
the average bitrate
Definition: avcodec.h:1568
#define AV_CH_LAYOUT_SURROUND
uint8_t ** cpl_coord_exp
coupling coord exponents (cplcoexp)
Definition: ac3enc.h:142
#define AC3_MAX_COEFS
Definition: ac3.h:35
int bandwidth_code
bandwidth code (0 to 60) (chbwcod)
Definition: ac3enc.h:210
const uint16_t ff_ac3_frame_size_tab[38][3]
Possible frame sizes.
Definition: ac3tab.c:37
uint8_t * grouped_exp_buffer
Definition: ac3enc.h:243
static av_cold int allocate_buffers(AC3EncodeContext *s)
Definition: ac3enc.c:2323
channels
Definition: aptx.c:30
#define LEVEL_PLUS_1POINT5DB
Definition: ac3.h:105
int16_t ** psd
psd per frequency bin
Definition: ac3enc.h:138
int frame_size_code
frame size code (frmsizecod)
Definition: ac3enc.h:188
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(INT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } if(HAVE_X86ASM &&HAVE_MMX) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out-> ch ch
Definition: audioconvert.c:56
const char * b
Definition: vf_curves.c:113
int frame_bits
all frame bits except exponents and mantissas
Definition: ac3enc.h:233
#define av_bswap16
Definition: bswap.h:31
void ff_ac3_process_exponents(AC3EncodeContext *s)
Calculate final exponents from the supplied MDCT coefficients and exponent shift. ...
Definition: ac3enc.c:637
#define EXP_REUSE
Definition: ac3.h:48
const uint16_t ff_ac3_sample_rate_tab[3]
Definition: ac3tab.c:129
#define AV_CH_LAYOUT_4POINT0
uint8_t ** cpl_coord_mant
coupling coord mantissas (cplcomant)
Definition: ac3enc.h:143
uint16_t ** qmant
quantized mantissas
Definition: ac3enc.h:141
int start_freq[AC3_MAX_CHANNELS]
start frequency bin (strtmant)
Definition: ac3enc.h:211
#define AV_CH_LAYOUT_STEREO
const uint16_t ff_ac3_slow_gain_tab[4]
Definition: ac3tab.c:288
PutBitContext pb
bitstream writer context
Definition: ac3enc.h:166
#define blk(i)
Definition: sha.c:185
#define EXP_D25
Definition: ac3.h:52
static const float cmixlev_options[CMIXLEV_NUM_OPTIONS]
Definition: ac3enc.c:55
int(* mdct_init)(struct AC3EncodeContext *s)
Definition: ac3enc.h:260
int num_cpl_channels
number of channels in coupling
Definition: ac3enc.h:151
AC3BitAllocParameters bit_alloc
bit allocation parameters
Definition: ac3enc.h:228
#define AV_CH_LAYOUT_5POINT0
static int count_exponent_bits(AC3EncodeContext *s)
Definition: ac3enc.c:547
static void extract_exponents(AC3EncodeContext *s)
Definition: ac3enc.c:328
Macro definitions for various function/variable attributes.
int ff_ac3_float_allocate_sample_buffers(AC3EncodeContext *s)
enum AVAudioServiceType audio_service_type
Type of service that the audio stream conveys.
Definition: avcodec.h:2238
int ff_ac3_validate_metadata(AC3EncodeContext *s)
Validate metadata options as set by AVOption system.
Definition: ac3enc.c:1833
float ltrt_surround_mix_level
Definition: ac3enc.h:113
int new_cpl_leak
send new coupling leak info
Definition: ac3enc.h:155
int rematrixing_enabled
stereo rematrixing enabled
Definition: ac3enc.h:220
void ff_eac3_get_frame_exp_strategy(AC3EncodeContext *s)
Determine frame exponent strategy use and indices.
Definition: eac3enc.c:68
static int16_t block[64]
Definition: dct.c:115
void(* extract_exponents)(uint8_t *exp, int32_t *coef, int nb_coefs)
Definition: ac3dsp.h:127
int channel_mode
channel mode (acmod)
Definition: ac3enc.h:199
int num_cpl_subbands
number of coupling subbands (ncplsubnd)
Definition: ac3enc.h:216
float surround_mix_level
Definition: ac3enc.h:103
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:2181
uint8_t
#define av_cold
Definition: attributes.h:82
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:64
static void count_frame_bits(AC3EncodeContext *s)
Definition: ac3enc.c:795
AVOptions.
static const float extmixlev_options[EXTMIXLEV_NUM_OPTIONS]
Definition: ac3enc.c:65
uint8_t rematrixing_flags[4]
rematrixing flags
Definition: ac3enc.h:147
#define EXP_D15
Definition: ac3.h:51
av_cold void ff_audiodsp_init(AudioDSPContext *c)
Definition: audiodsp.c:106
int fbw_channels
number of full-bandwidth channels (nfchans)
Definition: ac3enc.h:193
uint8_t new_cpl_coords[AC3_MAX_CHANNELS]
send new coupling coordinates (cplcoe)
Definition: ac3enc.h:152
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
static av_cold void set_bandwidth(AC3EncodeContext *s)
Definition: ac3enc.c:2253
const uint8_t ff_ac3_enc_channel_map[8][2][6]
Table to remap channels from SMPTE order to AC-3 order.
Definition: ac3tab.c:112
#define emms_c()
Definition: internal.h:55
av_cold int ff_ac3_encode_close(AVCodecContext *avctx)
Finalize encoding and free any memory allocated by the encoder.
Definition: ac3enc.c:2017
uint8_t * bap1_buffer
Definition: ac3enc.h:239
#define AV_CH_LOW_FREQUENCY
int slow_gain_code
slow gain code (sgaincod)
Definition: ac3enc.h:223
static AVFrame * frame
Public header for CRC hash function implementation.
uint8_t cpl_master_exp[AC3_MAX_CHANNELS]
coupling coord master exponents (mstrcplco)
Definition: ac3enc.h:153
static int flags
Definition: log.c:55
#define CRC16_POLY
CRC-16 Polynomial.
Definition: ac3enc.c:1575
void(* bit_alloc_calc_bap)(int16_t *mask, int16_t *psd, int start, int end, int snr_offset, int floor, const uint8_t *bap_tab, uint8_t *bap)
Calculate bit allocation pointers.
Definition: ac3dsp.h:106
#define ff_dlog(a,...)
uint8_t ** exp
original exponents
Definition: ac3enc.h:136
int num_rematrixing_bands
number of rematrixing bands
Definition: ac3enc.h:146
static av_cold int validate_options(AC3EncodeContext *s)
Definition: ac3enc.c:2108
AC3DSPContext ac3dsp
AC-3 optimized functions.
Definition: ac3enc.h:170
int loro_center_mix_level
Lo/Ro center mix level code.
Definition: ac3enc.h:206
int num_cpl_bands
number of coupling bands (ncplbnd)
Definition: ac3enc.h:217
#define AV_WB16(p, v)
Definition: intreadwrite.h:405
static int bit_alloc(AC3EncodeContext *s, int snr_offset)
Run the bit allocation with a given SNR offset.
Definition: ac3enc.c:1064
void ff_ac3_fixed_mdct_end(AC3EncodeContext *s)
Finalize MDCT and free allocated memory.
Definition: ac3enc_fixed.c:118
static void dprint_options(AC3EncodeContext *s)
Definition: ac3enc.c:1676
int lfe_channel
channel index of the LFE channel
Definition: ac3enc.h:196
int mant2_cnt
Definition: ac3enc.c:51
#define av_log(a,...)
int ref_bap_set
indicates if ref_bap pointers have been set
Definition: ac3enc.h:256
#define EXP_DIFF_THRESHOLD
Exponent Difference Threshold.
Definition: ac3enc.c:342
static av_cold void exponent_init(AC3EncodeContext *s)
Definition: ac3enc.c:306
static void quantize_mantissas_blk_ch(AC3Mant *s, int32_t *fixed_coef, uint8_t *exp, uint8_t *bap, int16_t *qmant, int start_freq, int end_freq)
Quantize a set of mantissas for a single channel in a single block.
Definition: ac3enc.c:1206
int new_snr_offsets
send new SNR offsets
Definition: ac3enc.h:154
void(* output_frame_header)(struct AC3EncodeContext *s)
Definition: ac3enc.h:266
int loro_surround_mix_level
Lo/Ro surround mix level code.
Definition: ac3enc.h:207
CoefType ** mdct_coef
MDCT coefficients.
Definition: ac3enc.h:134
int16_t * qmant4_ptr
mantissa pointers for bap=1,2,4
Definition: ac3enc.c:50
#define AV_CH_LAYOUT_5POINT1
uint8_t channel_in_cpl[AC3_MAX_CHANNELS]
channel in coupling (chincpl)
Definition: ac3enc.h:150
int16_t * qmant1_ptr
Definition: ac3enc.c:50
int eac3_info_metadata
Definition: ac3enc.h:121
int mixing_level
Definition: ac3enc.h:106
#define AC3ENC_OPT_SMALL_ROOM
Definition: ac3enc.h:87
int num_blks_code
number of blocks code (numblkscod)
Definition: ac3enc.h:184
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
const uint64_t ff_ac3_channel_layouts[19]
List of supported channel layouts.
Definition: ac3enc.c:81
static uint8_t * put_bits_ptr(PutBitContext *s)
Return the pointer to the byte where the bitstream writer will put the next bit.
Definition: put_bits.h:324
static int sym_quant(int c, int e, int levels)
Symmetric quantization on &#39;levels&#39; levels.
Definition: ac3enc.c:1166
const uint8_t ff_ac3_fast_decay_tab[4]
Definition: ac3tab.c:284
AC3EncOptions options
encoding options
Definition: ac3enc.h:164
int16_t ** band_psd
psd per critical band
Definition: ac3enc.h:139
float ltrt_center_mix_level
Definition: ac3enc.h:112
#define AVERROR(e)
Definition: error.h:43
static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy, int cpl)
Update the exponents so that they are the ones the decoder will decode.
Definition: ac3enc.c:424
int channels
total number of channels (nchans)
Definition: ac3enc.h:194
const char * r
Definition: vf_curves.c:111
int initial_padding
Audio only.
Definition: avcodec.h:3031
#define AC3_MAX_CHANNELS
maximum number of channels, including coupling channel
Definition: ac3.h:32
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:1598
int ff_ac3_bit_alloc_calc_mask(AC3BitAllocParameters *s, int16_t *band_psd, int start, int end, int fast_gain, int is_lfe, int dba_mode, int dba_nsegs, uint8_t *dba_offsets, uint8_t *dba_lengths, uint8_t *dba_values, int16_t *mask)
Calculate the masking curve.
Definition: ac3.c:118
uint8_t * buf
Definition: put_bits.h:38
uint16_t crc_inv[2]
Definition: ac3enc.h:189
int cpl_on
coupling turned on for this frame
Definition: ac3enc.h:214
simple assert() macros that are a bit more flexible than ISO C assert().
#define AV_CH_LAYOUT_QUAD
int16_t * mask_buffer
Definition: ac3enc.h:246
#define CONFIG_AC3_ENCODER
Definition: config.h:1273
int16_t * psd_buffer
Definition: ac3enc.h:244
int fixed_point
indicates if fixed-point encoder is being used
Definition: ac3enc.h:176
const char * av_get_sample_fmt_name(enum AVSampleFormat sample_fmt)
Return the name of sample_fmt, or NULL if sample_fmt is not recognized.
Definition: samplefmt.c:49
int ltrt_surround_mix_level
Lt/Rt surround mix level code.
Definition: ac3enc.h:205
int new_cpl_strategy
send new coupling strategy
Definition: ac3enc.h:148
int surround_mix_level
surround mix level code
Definition: ac3enc.h:203
#define LEVEL_MINUS_3DB
Definition: ac3.h:107
int cpl_in_use
coupling in use for this block (cplinu)
Definition: ac3enc.h:149
size_t av_strlcpy(char *dst, const char *src, size_t size)
Copy the string src to dst, but no more than size - 1 bytes, and null-terminate dst.
Definition: avstring.c:83
int cpl_enabled
coupling enabled for all frames
Definition: ac3enc.h:215
int8_t exp
Definition: eval.c:72
static void output_frame_end(AC3EncodeContext *s)
Definition: ac3enc.c:1612
#define EXTMIXLEV_NUM_OPTIONS
Definition: ac3enc.c:64
Definition: ac3enc.c:49
uint64_t channel_layout
Audio channel layout.
Definition: avcodec.h:2224
#define LEVEL_MINUS_4POINT5DB
Definition: ac3.h:108
static int put_bits_count(PutBitContext *s)
Definition: put_bits.h:85
#define AC3_BLOCK_SIZE
Definition: ac3.h:36
static void output_audio_block(AC3EncodeContext *s, int blk)
Definition: ac3enc.c:1385
const uint16_t ff_ac3_bitrate_tab[19]
Definition: ac3tab.c:132
static int count_mantissa_bits(AC3EncodeContext *s)
Definition: ac3enc.c:1038
#define AV_CH_LAYOUT_2_1
#define AV_CH_LAYOUT_2_2
Data for a single audio block.
Definition: ac3enc.h:133
#define AC3ENC_OPT_ON
Definition: ac3enc.h:79
common internal API header
int floor_code
floor code (floorcod)
Definition: ac3enc.h:227
int ff_ac3_compute_bit_allocation(AC3EncodeContext *s)
Definition: ac3enc.c:1146
#define AC3ENC_OPT_DOWNMIX_LORO
Definition: ac3enc.h:89
int bitstream_mode
bitstream mode (bsmod)
Definition: ac3enc.h:179
#define AC3ENC_OPT_ADCONV_STANDARD
Definition: ac3enc.h:91
int has_surround
indicates if there are one or more surround channels
Definition: ac3enc.h:198
audio channel layout utility functions
#define AV_CODEC_FLAG_BITEXACT
Use only bitexact stuff (except (I)DCT).
Definition: avcodec.h:886
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
#define FFMIN(a, b)
Definition: common.h:96
AudioDSPContext adsp
Definition: ac3enc.h:167
int eac3
indicates if this is E-AC-3 vs. AC-3
Definition: ac3enc.h:177
static const uint8_t ac3_bandwidth_tab[5][3][19]
LUT to select the bandwidth code based on the bit rate, sample rate, and number of full-bandwidth cha...
Definition: ac3enc.c:109
float loro_center_mix_level
Definition: ac3enc.h:114
av_cold void ff_ac3dsp_init(AC3DSPContext *c, int bit_exact)
Definition: ac3dsp.c:422
int mant4_cnt
mantissa counts for bap=1,2,4
Definition: ac3enc.c:51
int ff_ac3_float_mdct_init(AC3EncodeContext *s)
Initialize MDCT tables.
Definition: ac3enc_float.c:110
int32_t
const uint16_t ff_ac3_fast_gain_tab[8]
Definition: ac3tab.c:300
int ad_converter_type
Definition: ac3enc.h:119
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
Definition: crc.c:392
void ff_ac3_adjust_frame_size(AC3EncodeContext *s)
Adjust the frame size to make the average bit rate match the target bit rate.
Definition: ac3enc.c:183
#define AC3ENC_OPT_AUTO
Definition: ac3enc.h:77
int n
Definition: avisynth_c.h:684
int exponent_bits
number of bits used for exponents
Definition: ac3enc.h:234
int stereo_rematrixing
Definition: ac3enc.h:125
#define AV_CH_LAYOUT_5POINT1_BACK
int coarse_snr_offset
coarse SNR offsets (csnroffst)
Definition: ac3enc.h:229
Definition: ac3.h:118
if(ret< 0)
Definition: vf_mcdeint.c:279
int16_t ** mask
masking curve
Definition: ac3enc.h:140
void av_get_channel_layout_string(char *buf, int buf_size, int nb_channels, uint64_t channel_layout)
Return a description of a channel layout.
SampleType ** planar_samples
Definition: ac3enc.h:237
int fast_decay_code
fast decay code (fdcycod)
Definition: ac3enc.h:225
int16_t * qmant_buffer
Definition: ac3enc.h:247
int frame_size
Number of samples per channel in an audio frame.
Definition: avcodec.h:2193
#define AC3ENC_OPT_MODE_OFF
Definition: ac3enc.h:82
#define AC3ENC_OPT_ADCONV_HDCD
Definition: ac3enc.h:92
#define CPL_CH
coupling channel index
Definition: ac3.h:33
const uint8_t ff_eac3_default_cpl_band_struct[18]
Table E2.16 Default Coupling Banding Structure.
Definition: ac3tab.c:146
uint8_t * ref_bap[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS]
bit allocation pointers (bap)
Definition: ac3enc.h:255
void ff_eac3_output_frame_header(AC3EncodeContext *s)
Write the E-AC-3 frame header to the output bitstream.
Definition: eac3enc.c:128
Libavcodec external API header.
int audio_production_info
Definition: ac3enc.h:105
enum AVCodecID codec_id
Definition: avcodec.h:1528
int sample_rate
samples per second
Definition: avcodec.h:2173
int dolby_surround_mode
Definition: ac3enc.h:104
static const int8_t ac3_coupling_start_tab[6][3][19]
LUT to select the coupling start band based on the bit rate, sample rate, and number of full-bandwidt...
Definition: ac3enc.c:142
main external API structure.
Definition: avcodec.h:1518
int fast_gain_code[AC3_MAX_CHANNELS]
fast gain codes (signal-to-mask ratio) (fgaincod)
Definition: ac3enc.h:230
int sample_rate
sampling frequency, in Hz
Definition: ac3enc.h:182
CoefType * mdct_coef_buffer
Definition: ac3enc.h:240
#define LEVEL_ZERO
Definition: ac3.h:111
#define LEVEL_ONE
Definition: ac3.h:112
int has_center
indicates if there is a center channel
Definition: ac3enc.h:197
int bit_rate
target bit rate, in bits-per-second
Definition: ac3enc.h:181
static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
Definition: ac3enc.c:1578
int(* allocate_sample_buffers)(struct AC3EncodeContext *s)
Definition: ac3enc.h:263
const uint8_t * channel_map
channel map used to reorder channels
Definition: ac3enc.h:200
uint8_t * exp_buffer
Definition: ac3enc.h:242
int frame_bits_fixed
number of non-coefficient bits for fixed parameters
Definition: ac3enc.h:232
int end_freq[AC3_MAX_CHANNELS]
end frequency bin (endmant)
Definition: ac3enc.h:156
#define FLT_OPTION_THRESHOLD
Definition: ac3enc.c:1791
int(* compute_mantissa_size)(uint16_t mant_cnt[6][16])
Calculate the number of bits needed to encode a set of mantissas.
Definition: ac3dsp.h:125
static int validate_float_option(float v, const float *v_list, int v_list_size)
Definition: ac3enc.c:1793
int cpl_start
Definition: ac3enc.h:127
uint8_t * cpl_coord_exp_buffer
Definition: ac3enc.h:248
int ltrt_center_mix_level
Lt/Rt center mix level code.
Definition: ac3enc.h:204
#define AV_CH_LAYOUT_5POINT0_BACK
av_cold void ff_eac3_exponent_init(void)
Initialize E-AC-3 exponent tables.
Definition: eac3enc.c:52
int center_mix_level
center mix level code
Definition: ac3enc.h:202
#define AC3_MAX_BLOCKS
Definition: ac3.h:37
AC-3 encoder private context.
Definition: ac3enc.h:162
void ff_ac3_output_frame(AC3EncodeContext *s, unsigned char *frame)
Write the frame to the output bitstream.
Definition: ac3enc.c:1661
static void count_frame_bits_fixed(AC3EncodeContext *s)
Definition: ac3enc.c:653
#define snprintf
Definition: snprintf.h:34
AC3Block blocks[AC3_MAX_BLOCKS]
per-block info
Definition: ac3enc.h:174
const int16_t ff_ac3_floor_tab[8]
Definition: ac3tab.c:296
SampleType * windowed_samples
Definition: ac3enc.h:236
int mant1_cnt
Definition: ac3enc.c:51
int preferred_stereo_downmix
Definition: ac3enc.h:111
void ff_ac3_quantize_mantissas(AC3EncodeContext *s)
Quantize mantissas using coefficients, exponents, and bit allocation pointers.
Definition: ac3enc.c:1300
void(* ac3_exponent_min)(uint8_t *exp, int num_reuse_blocks, int nb_coefs)
Set each encoded exponent in a block to the minimum of itself and the exponents in the same frequency...
Definition: ac3dsp.h:43
int num_blocks
number of blocks per frame
Definition: ac3enc.h:185
static void encode_exponents(AC3EncodeContext *s)
Definition: ac3enc.c:497
#define CMIXLEV_NUM_OPTIONS
Definition: ac3enc.c:54
me_cmp_func sad[6]
Definition: me_cmp.h:56
float center_mix_level
Definition: ac3enc.h:102
#define EXP_NEW
Definition: ac3.h:49
static void reset_block_bap(AC3EncodeContext *s)
Definition: ac3enc.c:971
#define FF_ALLOC_ARRAY_OR_GOTO(ctx, p, nelem, elsize, label)
Definition: internal.h:158
static av_cold void bit_alloc_init(AC3EncodeContext *s)
Definition: ac3enc.c:759
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
Definition: crc.c:374
int extended_bsi_2
Definition: ac3enc.h:116
#define AC3_FRAME_SIZE
Definition: ac3.h:38
int frame_size
current frame size in bytes
Definition: ac3enc.h:187
#define SURMIXLEV_NUM_OPTIONS
Definition: ac3enc.c:59
int room_type
Definition: ac3enc.h:107
#define CONFIG_AC3_FIXED_ENCODER
Definition: config.h:1274
uint8_t ** grouped_exp
grouped exponents
Definition: ac3enc.h:137
int cpl_end_freq
coupling channel end frequency bin
Definition: ac3enc.h:212
#define AC3ENC_OPT_LARGE_ROOM
Definition: ac3enc.h:86
uint8_t cpl_band_sizes[AC3_MAX_CPL_BANDS]
number of coeffs in each coupling band
Definition: ac3enc.h:218
MECmpContext mecc
Definition: ac3enc.h:169
common internal api header.
#define AC3ENC_OPT_MODE_ON
Definition: ac3enc.h:81
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
Definition: put_bits.h:101
static void validate_mix_level(void *log_ctx, const char *opt_name, float *opt_param, const float *list, int list_size, int default_value, int min_value, int *ctx_param)
Definition: ac3enc.c:1809
static double c[64]
static const float surmixlev_options[SURMIXLEV_NUM_OPTIONS]
Definition: ac3enc.c:60
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
Definition: put_bits.h:48
int64_t bits_written
bit count (used to avg. bitrate)
Definition: ac3enc.h:190
#define AC3ENC_OPT_NONE
Definition: ac3enc.h:76
int bitstream_id
bitstream id (bsid)
Definition: ac3enc.h:178
int16_t * band_psd_buffer
Definition: ac3enc.h:245
int dolby_headphone_mode
Definition: ac3enc.h:118
AVCodecContext * avctx
parent AVCodecContext
Definition: ac3enc.h:165
uint8_t exp_ref_block[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS]
reference blocks for EXP_REUSE
Definition: ac3enc.h:254
void * priv_data
Definition: avcodec.h:1545
int cutoff
Audio cutoff bandwidth (0 means "automatic")
Definition: avcodec.h:2217
int allow_per_frame_metadata
Definition: ac3enc.h:124
void ff_ac3_bit_alloc_calc_psd(int8_t *exp, int start, int end, int16_t *psd, int16_t *band_psd)
Calculate the log power-spectral density of the input signal.
Definition: ac3.c:92
static void count_mantissa_bits_update_ch(AC3EncodeContext *s, int ch, uint16_t mant_cnt[AC3_MAX_BLOCKS][16], int start, int end)
Update mantissa bit counts for all blocks in 1 channel in a given bandwidth range.
Definition: ac3enc.c:1018
static av_always_inline int diff(const uint32_t a, const uint32_t b)
int original
Definition: ac3enc.h:109
#define LEVEL_PLUS_3DB
Definition: ac3.h:104
#define AC3ENC_OPT_DOWNMIX_LTRT
Definition: ac3enc.h:88
int channels
number of audio channels
Definition: avcodec.h:2174
#define AC3ENC_OPT_NOT_INDICATED
Definition: ac3enc.h:80
static int cbr_bit_allocation(AC3EncodeContext *s)
Definition: ac3enc.c:1095
uint8_t * bap_buffer
Definition: ac3enc.h:238
int frame_size_min
minimum frame size in case rounding is necessary
Definition: ac3enc.h:186
#define LEVEL_MINUS_6DB
Definition: ac3.h:109
void ff_ac3_float_mdct_end(AC3EncodeContext *s)
Finalize MDCT and free allocated memory.
Definition: ac3enc_float.c:97
#define av_uninit(x)
Definition: attributes.h:148
AC-3 encoder & E-AC-3 encoder common header.
int64_t av_get_default_channel_layout(int nb_channels)
Return default channel layout for a given number of channels.
static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
Definition: ac3enc.c:1595
#define LOCAL_ALIGNED_16(t, v,...)
Definition: internal.h:131
void ff_ac3_apply_rematrixing(AC3EncodeContext *s)
Apply stereo rematrixing to coefficients based on rematrixing flags.
Definition: ac3enc.c:272
#define av_freep(p)
void INT64 start
Definition: avisynth_c.h:690
const uint8_t ff_ac3_rematrix_band_tab[5]
Table of bin locations for rematrixing bands reference: Section 7.5.2 Rematrixing : Frequency Band De...
Definition: ac3tab.c:141
int64_t samples_written
sample count (used to avg. bitrate)
Definition: ac3enc.h:191
uint8_t * cpl_coord_mant_buffer
Definition: ac3enc.h:249
int use_frame_exp_strategy
indicates use of frame exp strategy
Definition: ac3enc.h:253
#define FFSWAP(type, a, b)
Definition: common.h:99
static void bit_alloc_masking(AC3EncodeContext *s)
Definition: ac3enc.c:941
int ff_ac3_fixed_mdct_init(AC3EncodeContext *s)
Initialize MDCT tables.
Definition: ac3enc_fixed.c:130
void ff_ac3_group_exponents(AC3EncodeContext *s)
Group exponents.
Definition: ac3enc.c:579
const uint16_t ff_ac3_db_per_bit_tab[4]
Definition: ac3tab.c:292
int16_t * qmant2_ptr
Definition: ac3enc.c:50
#define CONFIG_EAC3_ENCODER
Definition: config.h:1279
#define AV_CH_LAYOUT_MONO
void ff_ac3_compute_coupling_strategy(AC3EncodeContext *s)
Set the initial coupling strategy parameters prior to coupling analysis.
Definition: ac3enc.c:201
int cutoff
user-specified cutoff frequency, in Hz
Definition: ac3enc.h:209
E-AC-3 encoder.
int lfe_on
indicates if there is an LFE channel (lfeon)
Definition: ac3enc.h:195
int fine_snr_offset[AC3_MAX_CHANNELS]
fine SNR offsets (fsnroffst)
Definition: ac3enc.h:231
#define AC3ENC_OPT_OFF
Definition: ac3enc.h:78
Common code between the AC-3 encoder and decoder.
uint32_t AVCRC
Definition: crc.h:47
int32_t * fixed_coef_buffer
Definition: ac3enc.h:241
#define EXP_D45
Definition: ac3.h:53
int extended_bsi_1
Definition: ac3enc.h:110
int copyright
Definition: ac3enc.h:108
int32_t ** fixed_coef
fixed-point MDCT coefficients
Definition: ac3enc.h:135
av_cold int ff_ac3_encode_init(AVCodecContext *avctx)
Definition: ac3enc.c:2425
bitstream writer API