59 #define FREEZE_INTERVAL 128 81 int frontier = 1 << avctx->
trellis;
120 bytestream_put_le16(&extradata, avctx->
frame_size);
121 bytestream_put_le16(&extradata, 7);
122 for (i = 0; i < 7; i++) {
183 int nibble = 8*(delta < 0);
186 diff = delta + (step >> 3);
218 int predictor,
nibble, bias;
223 nibble = sample - predictor;
229 nibble = (nibble + bias) / c->
idelta;
230 nibble = av_clip_intp2(nibble, 3) & 0x0F;
232 predictor += ((nibble & 0x08) ? (nibble - 0x10) :
nibble) * c->
idelta;
235 c->
sample1 = av_clip_int16(predictor);
256 nibble =
FFMIN(7, abs(delta) * 4 / c->
step) + (delta < 0) * 8;
261 c->
step = av_clip(c->
step, 127, 24576);
267 const int16_t *samples,
uint8_t *dst,
272 const int frontier = 1 << avctx->
trellis;
279 int pathn = 0, froze = -1, i, j, k, generation = 0;
281 memset(hash, 0xff, 65536 *
sizeof(*hash));
283 memset(nodep_buf, 0, 2 * frontier *
sizeof(*nodep_buf));
284 nodes[0] = node_buf + frontier;
298 nodes[0]->
step = 127;
306 for (i = 0; i <
n; i++) {
311 memset(nodes_next, 0, frontier *
sizeof(
TrellisNode*));
312 for (j = 0; j < frontier && nodes[j]; j++) {
315 const int range = (j < frontier / 2) ? 1 : 0;
316 const int step = nodes[j]->step;
319 const int predictor = ((nodes[j]->sample1 * c->
coeff1) +
320 (nodes[j]->sample2 * c->
coeff2)) / 64;
321 const int div = (sample - predictor) / step;
322 const int nmin = av_clip(div-range, -8, 6);
323 const int nmax = av_clip(div+range, -7, 7);
324 for (nidx = nmin; nidx <= nmax; nidx++) {
325 const int nibble = nidx & 0xf;
326 int dec_sample = predictor + nidx * step;
327 #define STORE_NODE(NAME, STEP_INDEX)\ 333 dec_sample = av_clip_int16(dec_sample);\ 334 d = sample - dec_sample;\ 335 ssd = nodes[j]->ssd + d*(unsigned)d;\ 340 if (ssd < nodes[j]->ssd)\ 353 h = &hash[(uint16_t) dec_sample];\ 354 if (*h == generation)\ 356 if (heap_pos < frontier) {\ 361 pos = (frontier >> 1) +\ 362 (heap_pos & ((frontier >> 1) - 1));\ 363 if (ssd > nodes_next[pos]->ssd)\ 368 u = nodes_next[pos];\ 370 av_assert1(pathn < FREEZE_INTERVAL << avctx->trellis);\ 372 nodes_next[pos] = u;\ 376 u->step = STEP_INDEX;\ 377 u->sample2 = nodes[j]->sample1;\ 378 u->sample1 = dec_sample;\ 379 paths[u->path].nibble = nibble;\ 380 paths[u->path].prev = nodes[j]->path;\ 384 int parent = (pos - 1) >> 1;\ 385 if (nodes_next[parent]->ssd <= ssd)\ 387 FFSWAP(TrellisNode*, nodes_next[parent], nodes_next[pos]);\ 397 #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\ 398 const int predictor = nodes[j]->sample1;\ 399 const int div = (sample - predictor) * 4 / STEP_TABLE;\ 400 int nmin = av_clip(div - range, -7, 6);\ 401 int nmax = av_clip(div + range, -6, 7);\ 406 for (nidx = nmin; nidx <= nmax; nidx++) {\ 407 const int nibble = nidx < 0 ? 7 - nidx : nidx;\ 408 int dec_sample = predictor +\ 410 ff_adpcm_yamaha_difflookup[nibble]) / 8;\ 411 STORE_NODE(NAME, STEP_INDEX);\ 429 if (generation == 255) {
430 memset(hash, 0xff, 65536 *
sizeof(*hash));
435 if (nodes[0]->ssd > (1 << 28)) {
436 for (j = 1; j < frontier && nodes[j]; j++)
437 nodes[j]->ssd -= nodes[0]->ssd;
443 p = &paths[nodes[0]->path];
444 for (k = i; k > froze; k--) {
453 memset(nodes + 1, 0, (frontier - 1) *
sizeof(
TrellisNode*));
457 p = &paths[nodes[0]->
path];
458 for (i = n - 1; i > froze; i--) {
464 c->
sample1 = nodes[0]->sample1;
465 c->
sample2 = nodes[0]->sample2;
467 c->
step = nodes[0]->step;
468 c->
idelta = nodes[0]->step;
474 int n, i,
ch, st, pkt_size, ret;
475 const int16_t *samples;
481 samples = (
const int16_t *)frame->
data[0];
500 for (ch = 0; ch < avctx->
channels; ch++) {
513 for (ch = 0; ch < avctx->
channels; ch++) {
515 buf + ch * blocks * 8, &c->
status[ch],
518 for (i = 0; i < blocks; i++) {
519 for (ch = 0; ch < avctx->
channels; ch++) {
520 uint8_t *buf1 = buf + ch * blocks * 8 + i * 8;
521 for (j = 0; j < 8; j += 2)
522 *dst++ = buf1[j] | (buf1[j + 1] << 4);
527 for (i = 0; i < blocks; i++) {
528 for (ch = 0; ch < avctx->
channels; ch++) {
530 const int16_t *smp = &samples_p[
ch][1 + i * 8];
531 for (j = 0; j < 8; j += 2) {
546 for (ch = 0; ch < avctx->
channels; ch++) {
554 for (i = 0; i < 64; i++)
558 for (i = 0; i < 64; i += 2) {
582 for (i = 0; i < avctx->
channels; i++) {
596 buf + n, &c->
status[1], n,
598 for (i = 0; i <
n; i++) {
610 samples[2 * i + 1]));
617 for (i = 0; i < avctx->
channels; i++) {
623 for (i = 0; i < avctx->
channels; i++) {
628 for (i = 0; i < avctx->
channels; i++)
634 for (i = 0; i < avctx->
channels; i++)
643 for (i = 0; i <
n; i += 2)
644 *dst++ = (buf[i] << 4) | buf[i + 1];
650 for (i = 0; i <
n; i++)
651 *dst++ = (buf[i] << 4) | buf[n + i];
655 for (i = 7 * avctx->
channels; i < avctx->block_align; i++) {
671 for (i = 0; i <
n; i += 2)
672 *dst++ = buf[i] | (buf[i + 1] << 4);
678 for (i = 0; i <
n; i++)
679 *dst++ = buf[i] | (buf[n + i] << 4);
683 for (n *= avctx->
channels; n > 0; n--) {
694 avpkt->
size = pkt_size;
709 #define ADPCM_ENCODER(id_, name_, sample_fmts_, long_name_) \ 710 AVCodec ff_ ## name_ ## _encoder = { \ 712 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \ 713 .type = AVMEDIA_TYPE_AUDIO, \ 715 .priv_data_size = sizeof(ADPCMEncodeContext), \ 716 .init = adpcm_encode_init, \ 717 .encode2 = adpcm_encode_frame, \ 718 .close = adpcm_encode_close, \ 719 .sample_fmts = sample_fmts_, \ const struct AVCodec * codec
static av_cold int adpcm_encode_init(AVCodecContext *avctx)
This structure describes decoded (raw) audio or video data.
static void put_sbits(PutBitContext *pb, int n, int32_t value)
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
static uint8_t adpcm_ms_compress_sample(ADPCMChannelStatus *c, int16_t sample)
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(INT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } if(HAVE_X86ASM &&HAVE_MMX) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out-> ch ch
static uint8_t adpcm_ima_qt_compress_sample(ADPCMChannelStatus *c, int16_t sample)
static av_cold int adpcm_encode_close(AVCodecContext *avctx)
int block_align
number of bytes per packet if constant and known or 0 Used by some WAV based audio codecs...
static uint8_t adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, int16_t sample)
int ff_alloc_packet2(AVCodecContext *avctx, AVPacket *avpkt, int64_t size, int64_t min_size)
Check AVPacket size and/or allocate data.
const uint8_t ff_adpcm_AdaptCoeff1[]
Divided by 4 to fit in 8-bit integers.
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
#define u(width, name, range_min, range_max)
int bits_per_coded_sample
bits per sample/pixel from the demuxer (needed for huffyuv).
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
int av_get_bits_per_sample(enum AVCodecID codec_id)
Return codec bits per sample.
ADPCM encoder/decoder common header.
#define STORE_NODE(NAME, STEP_INDEX)
const int16_t ff_adpcm_step_table[89]
This is the step table.
const int8_t ff_adpcm_index_table[16]
static uint8_t adpcm_ima_compress_sample(ADPCMChannelStatus *c, int16_t sample)
const int8_t ff_adpcm_AdaptCoeff2[]
Divided by 4 to fit in 8-bit integers.
static void adpcm_compress_trellis(AVCodecContext *avctx, const int16_t *samples, uint8_t *dst, ADPCMChannelStatus *c, int n, int stride)
static int adpcm_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr)
static void error(const char *err)
int frame_size
Number of samples per channel in an audio frame.
const int16_t ff_adpcm_AdaptationTable[]
Libavcodec external API header.
AVSampleFormat
Audio sample formats.
int sample_rate
samples per second
main external API structure.
#define ADPCM_ENCODER(id_, name_, sample_fmts_, long_name_)
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
#define FF_ALLOC_ARRAY_OR_GOTO(ctx, p, nelem, elsize, label)
const int8_t ff_adpcm_yamaha_difflookup[]
common internal api header.
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
const int16_t ff_adpcm_yamaha_indexscale[]
#define FF_ALLOC_OR_GOTO(ctx, p, size, label)
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
int trellis
trellis RD quantization
#define AV_INPUT_BUFFER_PADDING_SIZE
Required number of additionally allocated bytes at the end of the input bitstream for decoding...
static av_always_inline int diff(const uint32_t a, const uint32_t b)
int channels
number of audio channels
static enum AVSampleFormat sample_fmts[]
uint8_t ** extended_data
pointers to the data planes/channels.
ADPCMChannelStatus status[6]
This structure stores compressed data.
int nb_samples
number of audio samples (per channel) described by this frame
static enum AVSampleFormat sample_fmts_p[]