FFmpeg  4.0
libm.h
Go to the documentation of this file.
1 /*
2  * erf function: Copyright (c) 2006 John Maddock
3  * This file is part of FFmpeg.
4  *
5  * FFmpeg is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU Lesser General Public
7  * License as published by the Free Software Foundation; either
8  * version 2.1 of the License, or (at your option) any later version.
9  *
10  * FFmpeg is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13  * Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public
16  * License along with FFmpeg; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18  */
19 
20 /**
21  * @file
22  * Replacements for frequently missing libm functions
23  */
24 
25 #ifndef AVUTIL_LIBM_H
26 #define AVUTIL_LIBM_H
27 
28 #include <math.h>
29 #include "config.h"
30 #include "attributes.h"
31 #include "intfloat.h"
32 #include "mathematics.h"
33 
34 #if HAVE_MIPSFPU && HAVE_INLINE_ASM
36 #endif /* HAVE_MIPSFPU && HAVE_INLINE_ASM*/
37 
38 #if !HAVE_ATANF
39 #undef atanf
40 #define atanf(x) ((float)atan(x))
41 #endif /* HAVE_ATANF */
42 
43 #if !HAVE_ATAN2F
44 #undef atan2f
45 #define atan2f(y, x) ((float)atan2(y, x))
46 #endif /* HAVE_ATAN2F */
47 
48 #if !HAVE_POWF
49 #undef powf
50 #define powf(x, y) ((float)pow(x, y))
51 #endif /* HAVE_POWF */
52 
53 #if !HAVE_CBRT
54 static av_always_inline double cbrt(double x)
55 {
56  return x < 0 ? -pow(-x, 1.0 / 3.0) : pow(x, 1.0 / 3.0);
57 }
58 #endif /* HAVE_CBRT */
59 
60 #if !HAVE_CBRTF
61 static av_always_inline float cbrtf(float x)
62 {
63  return x < 0 ? -powf(-x, 1.0 / 3.0) : powf(x, 1.0 / 3.0);
64 }
65 #endif /* HAVE_CBRTF */
66 
67 #if !HAVE_COPYSIGN
68 static av_always_inline double copysign(double x, double y)
69 {
70  uint64_t vx = av_double2int(x);
71  uint64_t vy = av_double2int(y);
72  return av_int2double((vx & UINT64_C(0x7fffffffffffffff)) | (vy & UINT64_C(0x8000000000000000)));
73 }
74 #endif /* HAVE_COPYSIGN */
75 
76 #if !HAVE_COSF
77 #undef cosf
78 #define cosf(x) ((float)cos(x))
79 #endif /* HAVE_COSF */
80 
81 #if !HAVE_ERF
82 static inline double ff_eval_poly(const double *coeff, int size, double x) {
83  double sum = coeff[size-1];
84  int i;
85  for (i = size-2; i >= 0; --i) {
86  sum *= x;
87  sum += coeff[i];
88  }
89  return sum;
90 }
91 
92 /**
93  * erf function
94  * Algorithm taken from the Boost project, source:
95  * http://www.boost.org/doc/libs/1_46_1/boost/math/special_functions/erf.hpp
96  * Use, modification and distribution are subject to the
97  * Boost Software License, Version 1.0 (see notice below).
98  * Boost Software License - Version 1.0 - August 17th, 2003
99 Permission is hereby granted, free of charge, to any person or organization
100 obtaining a copy of the software and accompanying documentation covered by
101 this license (the "Software") to use, reproduce, display, distribute,
102 execute, and transmit the Software, and to prepare derivative works of the
103 Software, and to permit third-parties to whom the Software is furnished to
104 do so, all subject to the following:
105 
106 The copyright notices in the Software and this entire statement, including
107 the above license grant, this restriction and the following disclaimer,
108 must be included in all copies of the Software, in whole or in part, and
109 all derivative works of the Software, unless such copies or derivative
110 works are solely in the form of machine-executable object code generated by
111 a source language processor.
112 
113 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
114 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
115 FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
116 SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
117 FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
118 ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
119 DEALINGS IN THE SOFTWARE.
120  */
121 static inline double erf(double z)
122 {
123 #ifndef FF_ARRAY_ELEMS
124 #define FF_ARRAY_ELEMS(a) (sizeof(a) / sizeof((a)[0]))
125 #endif
126  double result;
127 
128  /* handle the symmetry: erf(-x) = -erf(x) */
129  if (z < 0)
130  return -erf(-z);
131 
132  /* branch based on range of z, and pick appropriate approximation */
133  if (z == 0)
134  return 0;
135  else if (z < 1e-10)
136  return z * 1.125 + z * 0.003379167095512573896158903121545171688;
137  else if (z < 0.5) {
138  // Maximum Deviation Found: 1.561e-17
139  // Expected Error Term: 1.561e-17
140  // Maximum Relative Change in Control Points: 1.155e-04
141  // Max Error found at double precision = 2.961182e-17
142 
143  static const double y = 1.044948577880859375;
144  static const double p[] = {
145  0.0834305892146531832907,
146  -0.338165134459360935041,
147  -0.0509990735146777432841,
148  -0.00772758345802133288487,
149  -0.000322780120964605683831,
150  };
151  static const double q[] = {
152  1,
153  0.455004033050794024546,
154  0.0875222600142252549554,
155  0.00858571925074406212772,
156  0.000370900071787748000569,
157  };
158  double zz = z * z;
159  return z * (y + ff_eval_poly(p, FF_ARRAY_ELEMS(p), zz) / ff_eval_poly(q, FF_ARRAY_ELEMS(q), zz));
160  }
161  /* here onwards compute erfc */
162  else if (z < 1.5) {
163  // Maximum Deviation Found: 3.702e-17
164  // Expected Error Term: 3.702e-17
165  // Maximum Relative Change in Control Points: 2.845e-04
166  // Max Error found at double precision = 4.841816e-17
167  static const double y = 0.405935764312744140625;
168  static const double p[] = {
169  -0.098090592216281240205,
170  0.178114665841120341155,
171  0.191003695796775433986,
172  0.0888900368967884466578,
173  0.0195049001251218801359,
174  0.00180424538297014223957,
175  };
176  static const double q[] = {
177  1,
178  1.84759070983002217845,
179  1.42628004845511324508,
180  0.578052804889902404909,
181  0.12385097467900864233,
182  0.0113385233577001411017,
183  0.337511472483094676155e-5,
184  };
185  result = y + ff_eval_poly(p, FF_ARRAY_ELEMS(p), z - 0.5) / ff_eval_poly(q, FF_ARRAY_ELEMS(q), z - 0.5);
186  result *= exp(-z * z) / z;
187  return 1 - result;
188  }
189  else if (z < 2.5) {
190  // Max Error found at double precision = 6.599585e-18
191  // Maximum Deviation Found: 3.909e-18
192  // Expected Error Term: 3.909e-18
193  // Maximum Relative Change in Control Points: 9.886e-05
194  static const double y = 0.50672817230224609375;
195  static const double p[] = {
196  -0.0243500476207698441272,
197  0.0386540375035707201728,
198  0.04394818964209516296,
199  0.0175679436311802092299,
200  0.00323962406290842133584,
201  0.000235839115596880717416,
202  };
203  static const double q[] = {
204  1,
205  1.53991494948552447182,
206  0.982403709157920235114,
207  0.325732924782444448493,
208  0.0563921837420478160373,
209  0.00410369723978904575884,
210  };
211  result = y + ff_eval_poly(p, FF_ARRAY_ELEMS(p), z - 1.5) / ff_eval_poly(q, FF_ARRAY_ELEMS(q), z - 1.5);
212  result *= exp(-z * z) / z;
213  return 1 - result;
214  }
215  else if (z < 4.5) {
216  // Maximum Deviation Found: 1.512e-17
217  // Expected Error Term: 1.512e-17
218  // Maximum Relative Change in Control Points: 2.222e-04
219  // Max Error found at double precision = 2.062515e-17
220  static const double y = 0.5405750274658203125;
221  static const double p[] = {
222  0.00295276716530971662634,
223  0.0137384425896355332126,
224  0.00840807615555585383007,
225  0.00212825620914618649141,
226  0.000250269961544794627958,
227  0.113212406648847561139e-4,
228  };
229  static const double q[] = {
230  1,
231  1.04217814166938418171,
232  0.442597659481563127003,
233  0.0958492726301061423444,
234  0.0105982906484876531489,
235  0.000479411269521714493907,
236  };
237  result = y + ff_eval_poly(p, FF_ARRAY_ELEMS(p), z - 3.5) / ff_eval_poly(q, FF_ARRAY_ELEMS(q), z - 3.5);
238  result *= exp(-z * z) / z;
239  return 1 - result;
240  }
241  /* differ from Boost here, the claim of underflow of erfc(x) past 5.8 is
242  * slightly incorrect, change to 5.92
243  * (really somewhere between 5.9125 and 5.925 is when it saturates) */
244  else if (z < 5.92) {
245  // Max Error found at double precision = 2.997958e-17
246  // Maximum Deviation Found: 2.860e-17
247  // Expected Error Term: 2.859e-17
248  // Maximum Relative Change in Control Points: 1.357e-05
249  static const double y = 0.5579090118408203125;
250  static const double p[] = {
251  0.00628057170626964891937,
252  0.0175389834052493308818,
253  -0.212652252872804219852,
254  -0.687717681153649930619,
255  -2.5518551727311523996,
256  -3.22729451764143718517,
257  -2.8175401114513378771,
258  };
259  static const double q[] = {
260  1,
261  2.79257750980575282228,
262  11.0567237927800161565,
263  15.930646027911794143,
264  22.9367376522880577224,
265  13.5064170191802889145,
266  5.48409182238641741584,
267  };
268  result = y + ff_eval_poly(p, FF_ARRAY_ELEMS(p), 1 / z) / ff_eval_poly(q, FF_ARRAY_ELEMS(q), 1 / z);
269  result *= exp(-z * z) / z;
270  return 1 - result;
271  }
272  /* handle the nan case, but don't use isnan for max portability */
273  else if (z != z)
274  return z;
275  /* finally return saturated result */
276  else
277  return 1;
278 }
279 #endif /* HAVE_ERF */
280 
281 #if !HAVE_EXPF
282 #undef expf
283 #define expf(x) ((float)exp(x))
284 #endif /* HAVE_EXPF */
285 
286 #if !HAVE_EXP2
287 #undef exp2
288 #define exp2(x) exp((x) * M_LN2)
289 #endif /* HAVE_EXP2 */
290 
291 #if !HAVE_EXP2F
292 #undef exp2f
293 #define exp2f(x) ((float)exp2(x))
294 #endif /* HAVE_EXP2F */
295 
296 #if !HAVE_ISINF
297 #undef isinf
298 /* Note: these do not follow the BSD/Apple/GNU convention of returning -1 for
299 -Inf, +1 for Inf, 0 otherwise, but merely follow the POSIX/ISO mandated spec of
300 returning a non-zero value for +/-Inf, 0 otherwise. */
302 {
303  uint32_t v = av_float2int(x);
304  if ((v & 0x7f800000) != 0x7f800000)
305  return 0;
306  return !(v & 0x007fffff);
307 }
308 
310 {
311  uint64_t v = av_double2int(x);
312  if ((v & 0x7ff0000000000000) != 0x7ff0000000000000)
313  return 0;
314  return !(v & 0x000fffffffffffff);
315 }
316 
317 #define isinf(x) \
318  (sizeof(x) == sizeof(float) \
319  ? avpriv_isinff(x) \
320  : avpriv_isinf(x))
321 #endif /* HAVE_ISINF */
322 
323 #if !HAVE_ISNAN
325 {
326  uint32_t v = av_float2int(x);
327  if ((v & 0x7f800000) != 0x7f800000)
328  return 0;
329  return v & 0x007fffff;
330 }
331 
333 {
334  uint64_t v = av_double2int(x);
335  if ((v & 0x7ff0000000000000) != 0x7ff0000000000000)
336  return 0;
337  return (v & 0x000fffffffffffff) && 1;
338 }
339 
340 #define isnan(x) \
341  (sizeof(x) == sizeof(float) \
342  ? avpriv_isnanf(x) \
343  : avpriv_isnan(x))
344 #endif /* HAVE_ISNAN */
345 
346 #if !HAVE_ISFINITE
348 {
349  uint32_t v = av_float2int(x);
350  return (v & 0x7f800000) != 0x7f800000;
351 }
352 
354 {
355  uint64_t v = av_double2int(x);
356  return (v & 0x7ff0000000000000) != 0x7ff0000000000000;
357 }
358 
359 #define isfinite(x) \
360  (sizeof(x) == sizeof(float) \
361  ? avpriv_isfinitef(x) \
362  : avpriv_isfinite(x))
363 #endif /* HAVE_ISFINITE */
364 
365 #if !HAVE_HYPOT
366 static inline av_const double hypot(double x, double y)
367 {
368  double ret, temp;
369  x = fabs(x);
370  y = fabs(y);
371 
372  if (isinf(x) || isinf(y))
373  return av_int2double(0x7ff0000000000000);
374  if (x == 0 || y == 0)
375  return x + y;
376  if (x < y) {
377  temp = x;
378  x = y;
379  y = temp;
380  }
381 
382  y = y/x;
383  return x*sqrt(1 + y*y);
384 }
385 #endif /* HAVE_HYPOT */
386 
387 #if !HAVE_LDEXPF
388 #undef ldexpf
389 #define ldexpf(x, exp) ((float)ldexp(x, exp))
390 #endif /* HAVE_LDEXPF */
391 
392 #if !HAVE_LLRINT
393 #undef llrint
394 #define llrint(x) ((long long)rint(x))
395 #endif /* HAVE_LLRINT */
396 
397 #if !HAVE_LLRINTF
398 #undef llrintf
399 #define llrintf(x) ((long long)rint(x))
400 #endif /* HAVE_LLRINT */
401 
402 #if !HAVE_LOG2
403 #undef log2
404 #define log2(x) (log(x) * 1.44269504088896340736)
405 #endif /* HAVE_LOG2 */
406 
407 #if !HAVE_LOG2F
408 #undef log2f
409 #define log2f(x) ((float)log2(x))
410 #endif /* HAVE_LOG2F */
411 
412 #if !HAVE_LOG10F
413 #undef log10f
414 #define log10f(x) ((float)log10(x))
415 #endif /* HAVE_LOG10F */
416 
417 #if !HAVE_SINF
418 #undef sinf
419 #define sinf(x) ((float)sin(x))
420 #endif /* HAVE_SINF */
421 
422 #if !HAVE_RINT
423 static inline double rint(double x)
424 {
425  return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5);
426 }
427 #endif /* HAVE_RINT */
428 
429 #if !HAVE_LRINT
430 static av_always_inline av_const long int lrint(double x)
431 {
432  return rint(x);
433 }
434 #endif /* HAVE_LRINT */
435 
436 #if !HAVE_LRINTF
437 static av_always_inline av_const long int lrintf(float x)
438 {
439  return (int)(rint(x));
440 }
441 #endif /* HAVE_LRINTF */
442 
443 #if !HAVE_ROUND
444 static av_always_inline av_const double round(double x)
445 {
446  return (x > 0) ? floor(x + 0.5) : ceil(x - 0.5);
447 }
448 #endif /* HAVE_ROUND */
449 
450 #if !HAVE_ROUNDF
451 static av_always_inline av_const float roundf(float x)
452 {
453  return (x > 0) ? floor(x + 0.5) : ceil(x - 0.5);
454 }
455 #endif /* HAVE_ROUNDF */
456 
457 #if !HAVE_TRUNC
458 static av_always_inline av_const double trunc(double x)
459 {
460  return (x > 0) ? floor(x) : ceil(x);
461 }
462 #endif /* HAVE_TRUNC */
463 
464 #if !HAVE_TRUNCF
465 static av_always_inline av_const float truncf(float x)
466 {
467  return (x > 0) ? floor(x) : ceil(x);
468 }
469 #endif /* HAVE_TRUNCF */
470 
471 #endif /* AVUTIL_LIBM_H */
#define av_const
Definition: attributes.h:76
int size
#define isinf(x)
Definition: libm.h:317
static double rint(double x)
Definition: libm.h:423
static double erf(double z)
erf function Algorithm taken from the Boost project, source: http://www.boost.org/doc/libs/1_46_1/boo...
Definition: libm.h:121
else temp
Definition: vf_mcdeint.c:256
#define FF_ARRAY_ELEMS(a)
static av_always_inline av_const int avpriv_isnanf(float x)
Definition: libm.h:324
static av_always_inline uint64_t av_double2int(double f)
Reinterpret a double as a 64-bit integer.
Definition: intfloat.h:70
Macro definitions for various function/variable attributes.
static double ff_eval_poly(const double *coeff, int size, double x)
Definition: libm.h:82
static av_always_inline double av_int2double(uint64_t i)
Reinterpret a 64-bit integer as a double.
Definition: intfloat.h:60
static av_always_inline av_const int avpriv_isinff(float x)
Definition: libm.h:301
static av_always_inline av_const int avpriv_isfinitef(float x)
Definition: libm.h:347
static av_always_inline double cbrt(double x)
Definition: libm.h:54
static av_always_inline av_const int avpriv_isinf(double x)
Definition: libm.h:309
static av_always_inline av_const double round(double x)
Definition: libm.h:444
static av_always_inline av_const int avpriv_isfinite(double x)
Definition: libm.h:353
int8_t exp
Definition: eval.c:72
#define powf(x, y)
Definition: libm.h:50
static av_const double hypot(double x, double y)
Definition: libm.h:366
static av_always_inline av_const double trunc(double x)
Definition: libm.h:458
static av_always_inline av_const long int lrintf(float x)
Definition: libm.h:437
static av_always_inline av_const float truncf(float x)
Definition: libm.h:465
static av_always_inline float cbrtf(float x)
Definition: libm.h:61
static av_always_inline av_const long int lrint(double x)
Definition: libm.h:430
static av_always_inline double copysign(double x, double y)
Definition: libm.h:68
static av_always_inline av_const int avpriv_isnan(double x)
Definition: libm.h:332
static av_always_inline uint32_t av_float2int(float f)
Reinterpret a float as a 32-bit integer.
Definition: intfloat.h:50
static av_always_inline av_const float roundf(float x)
Definition: libm.h:451
MIPS optimization for some libm functions.
static const double coeff[2][5]
Definition: vf_owdenoise.c:72
#define av_always_inline
Definition: attributes.h:39