FFmpeg  4.0
proresdec_lgpl.c
Go to the documentation of this file.
1 /*
2  * Apple ProRes compatible decoder
3  *
4  * Copyright (c) 2010-2011 Maxim Poliakovski
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * This is a decoder for Apple ProRes 422 SD/HQ/LT/Proxy and ProRes 4444.
26  * It is used for storing and editing high definition video data in Apple's Final Cut Pro.
27  *
28  * @see http://wiki.multimedia.cx/index.php?title=Apple_ProRes
29  */
30 
31 #define LONG_BITSTREAM_READER // some ProRes vlc codes require up to 28 bits to be read at once
32 
33 #include <stdint.h>
34 
35 #include "libavutil/intmath.h"
36 #include "avcodec.h"
37 #include "idctdsp.h"
38 #include "internal.h"
39 #include "proresdata.h"
40 #include "proresdsp.h"
41 #include "get_bits.h"
42 
43 typedef struct ProresThreadData {
44  const uint8_t *index; ///< pointers to the data of this slice
45  int slice_num;
46  int x_pos, y_pos;
48  int prev_slice_sf; ///< scalefactor of the previous decoded slice
49  DECLARE_ALIGNED(16, int16_t, blocks)[8 * 4 * 64];
50  DECLARE_ALIGNED(16, int16_t, qmat_luma_scaled)[64];
53 
54 typedef struct ProresContext {
56  AVFrame *frame;
58  int scantable_type; ///< -1 = uninitialized, 0 = progressive, 1/2 = interlaced
59 
60  int frame_type; ///< 0 = progressive, 1 = top-field first, 2 = bottom-field first
61  int pic_format; ///< 2 = 422, 3 = 444
62  uint8_t qmat_luma[64]; ///< dequantization matrix for luma
63  uint8_t qmat_chroma[64]; ///< dequantization matrix for chroma
64  int qmat_changed; ///< 1 - global quantization matrices changed
65  int total_slices; ///< total number of slices in a picture
67  int pic_num;
70  int num_chroma_blocks; ///< number of chrominance blocks in a macroblock
75  int num_x_mbs;
76  int num_y_mbs;
77  int alpha_info;
79 
80 
82 {
83  ProresContext *ctx = avctx->priv_data;
84 
85  ctx->total_slices = 0;
86  ctx->slice_data = NULL;
87 
89  ff_proresdsp_init(&ctx->dsp, avctx);
90 
91  ctx->scantable_type = -1; // set scantable type to uninitialized
92  memset(ctx->qmat_luma, 4, 64);
93  memset(ctx->qmat_chroma, 4, 64);
94 
95  return 0;
96 }
97 
98 
100  const int data_size, AVCodecContext *avctx)
101 {
102  int hdr_size, version, width, height, flags;
103  const uint8_t *ptr;
104 
105  hdr_size = AV_RB16(buf);
106  if (hdr_size > data_size) {
107  av_log(avctx, AV_LOG_ERROR, "frame data too small\n");
108  return AVERROR_INVALIDDATA;
109  }
110 
111  version = AV_RB16(buf + 2);
112  if (version >= 2) {
113  av_log(avctx, AV_LOG_ERROR,
114  "unsupported header version: %d\n", version);
115  return AVERROR_INVALIDDATA;
116  }
117 
118  width = AV_RB16(buf + 8);
119  height = AV_RB16(buf + 10);
120  if (width != avctx->width || height != avctx->height) {
121  av_log(avctx, AV_LOG_ERROR,
122  "picture dimension changed: old: %d x %d, new: %d x %d\n",
123  avctx->width, avctx->height, width, height);
124  return AVERROR_INVALIDDATA;
125  }
126 
127  ctx->frame_type = (buf[12] >> 2) & 3;
128  if (ctx->frame_type > 2) {
129  av_log(avctx, AV_LOG_ERROR,
130  "unsupported frame type: %d\n", ctx->frame_type);
131  return AVERROR_INVALIDDATA;
132  }
133 
134  ctx->chroma_factor = (buf[12] >> 6) & 3;
135  ctx->mb_chroma_factor = ctx->chroma_factor + 2;
136  ctx->num_chroma_blocks = (1 << ctx->chroma_factor) >> 1;
137  ctx->alpha_info = buf[17] & 0xf;
138 
139  if (ctx->alpha_info > 2) {
140  av_log(avctx, AV_LOG_ERROR, "Invalid alpha mode %d\n", ctx->alpha_info);
141  return AVERROR_INVALIDDATA;
142  }
143  if (avctx->skip_alpha) ctx->alpha_info = 0;
144 
145  switch (ctx->chroma_factor) {
146  case 2:
149  break;
150  case 3:
153  break;
154  default:
155  av_log(avctx, AV_LOG_ERROR,
156  "unsupported picture format: %d\n", ctx->pic_format);
157  return AVERROR_INVALIDDATA;
158  }
159 
160  if (ctx->scantable_type != ctx->frame_type) {
161  if (!ctx->frame_type)
164  else
167  ctx->scantable_type = ctx->frame_type;
168  }
169 
170  if (ctx->frame_type) { /* if interlaced */
171  ctx->frame->interlaced_frame = 1;
172  ctx->frame->top_field_first = ctx->frame_type & 1;
173  } else {
174  ctx->frame->interlaced_frame = 0;
175  }
176 
177  avctx->color_primaries = buf[14];
178  avctx->color_trc = buf[15];
179  avctx->colorspace = buf[16];
180  avctx->color_range = AVCOL_RANGE_MPEG;
181 
182  ctx->qmat_changed = 0;
183  ptr = buf + 20;
184  flags = buf[19];
185  if (flags & 2) {
186  if (ptr - buf > hdr_size - 64) {
187  av_log(avctx, AV_LOG_ERROR, "header data too small\n");
188  return AVERROR_INVALIDDATA;
189  }
190  if (memcmp(ctx->qmat_luma, ptr, 64)) {
191  memcpy(ctx->qmat_luma, ptr, 64);
192  ctx->qmat_changed = 1;
193  }
194  ptr += 64;
195  } else {
196  memset(ctx->qmat_luma, 4, 64);
197  ctx->qmat_changed = 1;
198  }
199 
200  if (flags & 1) {
201  if (ptr - buf > hdr_size - 64) {
202  av_log(avctx, AV_LOG_ERROR, "header data too small\n");
203  return -1;
204  }
205  if (memcmp(ctx->qmat_chroma, ptr, 64)) {
206  memcpy(ctx->qmat_chroma, ptr, 64);
207  ctx->qmat_changed = 1;
208  }
209  } else {
210  memset(ctx->qmat_chroma, 4, 64);
211  ctx->qmat_changed = 1;
212  }
213 
214  return hdr_size;
215 }
216 
217 
219  const int data_size, AVCodecContext *avctx)
220 {
221  int i, hdr_size, pic_data_size, num_slices;
222  int slice_width_factor, slice_height_factor;
223  int remainder, num_x_slices;
224  const uint8_t *data_ptr, *index_ptr;
225 
226  hdr_size = data_size > 0 ? buf[0] >> 3 : 0;
227  if (hdr_size < 8 || hdr_size > data_size) {
228  av_log(avctx, AV_LOG_ERROR, "picture header too small\n");
229  return AVERROR_INVALIDDATA;
230  }
231 
232  pic_data_size = AV_RB32(buf + 1);
233  if (pic_data_size > data_size) {
234  av_log(avctx, AV_LOG_ERROR, "picture data too small\n");
235  return AVERROR_INVALIDDATA;
236  }
237 
238  slice_width_factor = buf[7] >> 4;
239  slice_height_factor = buf[7] & 0xF;
240  if (slice_width_factor > 3 || slice_height_factor) {
241  av_log(avctx, AV_LOG_ERROR,
242  "unsupported slice dimension: %d x %d\n",
243  1 << slice_width_factor, 1 << slice_height_factor);
244  return AVERROR_INVALIDDATA;
245  }
246 
247  ctx->slice_width_factor = slice_width_factor;
248  ctx->slice_height_factor = slice_height_factor;
249 
250  ctx->num_x_mbs = (avctx->width + 15) >> 4;
251  ctx->num_y_mbs = (avctx->height +
252  (1 << (4 + ctx->frame->interlaced_frame)) - 1) >>
253  (4 + ctx->frame->interlaced_frame);
254 
255  remainder = av_mod_uintp2(ctx->num_x_mbs, slice_width_factor);
256  num_x_slices = (ctx->num_x_mbs >> slice_width_factor) + (remainder & 1) +
257  ((remainder >> 1) & 1) + ((remainder >> 2) & 1);
258 
259  num_slices = num_x_slices * ctx->num_y_mbs;
260  if (num_slices != AV_RB16(buf + 5)) {
261  av_log(avctx, AV_LOG_ERROR, "invalid number of slices\n");
262  return AVERROR_INVALIDDATA;
263  }
264 
265  if (ctx->total_slices != num_slices) {
266  av_freep(&ctx->slice_data);
267  ctx->slice_data = av_malloc_array(num_slices + 1, sizeof(ctx->slice_data[0]));
268  if (!ctx->slice_data)
269  return AVERROR(ENOMEM);
270  ctx->total_slices = num_slices;
271  }
272 
273  if (hdr_size + num_slices * 2 > data_size) {
274  av_log(avctx, AV_LOG_ERROR, "slice table too small\n");
275  return AVERROR_INVALIDDATA;
276  }
277 
278  /* parse slice table allowing quick access to the slice data */
279  index_ptr = buf + hdr_size;
280  data_ptr = index_ptr + num_slices * 2;
281 
282  for (i = 0; i < num_slices; i++) {
283  ctx->slice_data[i].index = data_ptr;
284  ctx->slice_data[i].prev_slice_sf = 0;
285  data_ptr += AV_RB16(index_ptr + i * 2);
286  }
287  ctx->slice_data[i].index = data_ptr;
288  ctx->slice_data[i].prev_slice_sf = 0;
289 
290  if (data_ptr > buf + data_size) {
291  av_log(avctx, AV_LOG_ERROR, "out of slice data\n");
292  return -1;
293  }
294 
295  return pic_data_size;
296 }
297 
298 
299 /**
300  * Read an unsigned rice/exp golomb codeword.
301  */
302 static inline int decode_vlc_codeword(GetBitContext *gb, unsigned codebook)
303 {
304  unsigned int rice_order, exp_order, switch_bits;
305  unsigned int buf, code;
306  int log, prefix_len, len;
307 
308  OPEN_READER(re, gb);
309  UPDATE_CACHE(re, gb);
310  buf = GET_CACHE(re, gb);
311 
312  /* number of prefix bits to switch between Rice and expGolomb */
313  switch_bits = (codebook & 3) + 1;
314  rice_order = codebook >> 5; /* rice code order */
315  exp_order = (codebook >> 2) & 7; /* exp golomb code order */
316 
317  log = 31 - av_log2(buf); /* count prefix bits (zeroes) */
318 
319  if (log < switch_bits) { /* ok, we got a rice code */
320  if (!rice_order) {
321  /* shortcut for faster decoding of rice codes without remainder */
322  code = log;
323  LAST_SKIP_BITS(re, gb, log + 1);
324  } else {
325  prefix_len = log + 1;
326  code = (log << rice_order) + NEG_USR32(buf << prefix_len, rice_order);
327  LAST_SKIP_BITS(re, gb, prefix_len + rice_order);
328  }
329  } else { /* otherwise we got a exp golomb code */
330  len = (log << 1) - switch_bits + exp_order + 1;
331  code = NEG_USR32(buf, len) - (1 << exp_order) + (switch_bits << rice_order);
332  LAST_SKIP_BITS(re, gb, len);
333  }
334 
335  CLOSE_READER(re, gb);
336 
337  return code;
338 }
339 
340 #define LSB2SIGN(x) (-((x) & 1))
341 #define TOSIGNED(x) (((x) >> 1) ^ LSB2SIGN(x))
342 
343 /**
344  * Decode DC coefficients for all blocks in a slice.
345  */
346 static inline void decode_dc_coeffs(GetBitContext *gb, int16_t *out,
347  int nblocks)
348 {
349  int16_t prev_dc;
350  int i, sign;
351  int16_t delta;
352  unsigned int code;
353 
354  code = decode_vlc_codeword(gb, FIRST_DC_CB);
355  out[0] = prev_dc = TOSIGNED(code);
356 
357  out += 64; /* move to the DC coeff of the next block */
358  delta = 3;
359 
360  for (i = 1; i < nblocks; i++, out += 64) {
361  code = decode_vlc_codeword(gb, ff_prores_dc_codebook[FFMIN(FFABS(delta), 3)]);
362 
363  sign = -(((delta >> 15) & 1) ^ (code & 1));
364  delta = (((code + 1) >> 1) ^ sign) - sign;
365  prev_dc += delta;
366  out[0] = prev_dc;
367  }
368 }
369 
370 #define MAX_PADDING 16
371 
372 /**
373  * Decode AC coefficients for all blocks in a slice.
374  */
375 static inline int decode_ac_coeffs(GetBitContext *gb, int16_t *out,
376  int blocks_per_slice,
377  int plane_size_factor,
378  const uint8_t *scan)
379 {
380  int pos, block_mask, run, level, sign, run_cb_index, lev_cb_index;
381  int max_coeffs, bits_left;
382 
383  /* set initial prediction values */
384  run = 4;
385  level = 2;
386 
387  max_coeffs = blocks_per_slice << 6;
388  block_mask = blocks_per_slice - 1;
389 
390  for (pos = blocks_per_slice - 1; pos < max_coeffs;) {
391  run_cb_index = ff_prores_run_to_cb_index[FFMIN(run, 15)];
392  lev_cb_index = ff_prores_lev_to_cb_index[FFMIN(level, 9)];
393 
394  bits_left = get_bits_left(gb);
395  if (bits_left <= 0 || (bits_left <= MAX_PADDING && !show_bits(gb, bits_left)))
396  return 0;
397 
398  run = decode_vlc_codeword(gb, ff_prores_ac_codebook[run_cb_index]);
399  if (run < 0)
400  return AVERROR_INVALIDDATA;
401 
402  bits_left = get_bits_left(gb);
403  if (bits_left <= 0 || (bits_left <= MAX_PADDING && !show_bits(gb, bits_left)))
404  return AVERROR_INVALIDDATA;
405 
406  level = decode_vlc_codeword(gb, ff_prores_ac_codebook[lev_cb_index]) + 1;
407  if (level < 0)
408  return AVERROR_INVALIDDATA;
409 
410  pos += run + 1;
411  if (pos >= max_coeffs)
412  break;
413 
414  sign = get_sbits(gb, 1);
415  out[((pos & block_mask) << 6) + scan[pos >> plane_size_factor]] =
416  (level ^ sign) - sign;
417  }
418 
419  return 0;
420 }
421 
422 
423 /**
424  * Decode a slice plane (luma or chroma).
425  */
427  const uint8_t *buf,
428  int data_size, uint16_t *out_ptr,
429  int linesize, int mbs_per_slice,
430  int blocks_per_mb, int plane_size_factor,
431  const int16_t *qmat, int is_chroma)
432 {
433  GetBitContext gb;
434  int16_t *block_ptr;
435  int mb_num, blocks_per_slice, ret;
436 
437  blocks_per_slice = mbs_per_slice * blocks_per_mb;
438 
439  memset(td->blocks, 0, 8 * 4 * 64 * sizeof(*td->blocks));
440 
441  init_get_bits(&gb, buf, data_size << 3);
442 
443  decode_dc_coeffs(&gb, td->blocks, blocks_per_slice);
444 
445  ret = decode_ac_coeffs(&gb, td->blocks, blocks_per_slice,
446  plane_size_factor, ctx->scantable.permutated);
447  if (ret < 0)
448  return ret;
449 
450  /* inverse quantization, inverse transform and output */
451  block_ptr = td->blocks;
452 
453  if (!is_chroma) {
454  for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) {
455  ctx->dsp.idct_put(out_ptr, linesize, block_ptr, qmat);
456  block_ptr += 64;
457  if (blocks_per_mb > 2) {
458  ctx->dsp.idct_put(out_ptr + 8, linesize, block_ptr, qmat);
459  block_ptr += 64;
460  }
461  ctx->dsp.idct_put(out_ptr + linesize * 4, linesize, block_ptr, qmat);
462  block_ptr += 64;
463  if (blocks_per_mb > 2) {
464  ctx->dsp.idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat);
465  block_ptr += 64;
466  }
467  }
468  } else {
469  for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) {
470  ctx->dsp.idct_put(out_ptr, linesize, block_ptr, qmat);
471  block_ptr += 64;
472  ctx->dsp.idct_put(out_ptr + linesize * 4, linesize, block_ptr, qmat);
473  block_ptr += 64;
474  if (blocks_per_mb > 2) {
475  ctx->dsp.idct_put(out_ptr + 8, linesize, block_ptr, qmat);
476  block_ptr += 64;
477  ctx->dsp.idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat);
478  block_ptr += 64;
479  }
480  }
481  }
482  return 0;
483 }
484 
485 
486 static void unpack_alpha(GetBitContext *gb, uint16_t *dst, int num_coeffs,
487  const int num_bits)
488 {
489  const int mask = (1 << num_bits) - 1;
490  int i, idx, val, alpha_val;
491 
492  idx = 0;
493  alpha_val = mask;
494  do {
495  do {
496  if (get_bits1(gb))
497  val = get_bits(gb, num_bits);
498  else {
499  int sign;
500  val = get_bits(gb, num_bits == 16 ? 7 : 4);
501  sign = val & 1;
502  val = (val + 2) >> 1;
503  if (sign)
504  val = -val;
505  }
506  alpha_val = (alpha_val + val) & mask;
507  if (num_bits == 16)
508  dst[idx++] = alpha_val >> 6;
509  else
510  dst[idx++] = (alpha_val << 2) | (alpha_val >> 6);
511  if (idx >= num_coeffs) {
512  break;
513  }
514  } while (get_bits1(gb));
515  val = get_bits(gb, 4);
516  if (!val)
517  val = get_bits(gb, 11);
518  if (idx + val > num_coeffs)
519  val = num_coeffs - idx;
520  if (num_bits == 16)
521  for (i = 0; i < val; i++)
522  dst[idx++] = alpha_val >> 6;
523  else
524  for (i = 0; i < val; i++)
525  dst[idx++] = (alpha_val << 2) | (alpha_val >> 6);
526  } while (idx < num_coeffs);
527 }
528 
529 /**
530  * Decode alpha slice plane.
531  */
533  const uint8_t *buf, int data_size,
534  uint16_t *out_ptr, int linesize,
535  int mbs_per_slice)
536 {
537  GetBitContext gb;
538  int i;
539  uint16_t *block_ptr;
540 
541  memset(td->blocks, 0, 8 * 4 * 64 * sizeof(*td->blocks));
542 
543  init_get_bits(&gb, buf, data_size << 3);
544 
545  if (ctx->alpha_info == 2)
546  unpack_alpha(&gb, td->blocks, mbs_per_slice * 4 * 64, 16);
547  else
548  unpack_alpha(&gb, td->blocks, mbs_per_slice * 4 * 64, 8);
549 
550  block_ptr = td->blocks;
551 
552  for (i = 0; i < 16; i++) {
553  memcpy(out_ptr, block_ptr, 16 * mbs_per_slice * sizeof(*out_ptr));
554  out_ptr += linesize >> 1;
555  block_ptr += 16 * mbs_per_slice;
556  }
557 }
558 
559 static int decode_slice(AVCodecContext *avctx, void *tdata)
560 {
561  ProresThreadData *td = tdata;
562  ProresContext *ctx = avctx->priv_data;
563  int mb_x_pos = td->x_pos;
564  int mb_y_pos = td->y_pos;
565  int pic_num = ctx->pic_num;
566  int slice_num = td->slice_num;
567  int mbs_per_slice = td->slice_width;
568  const uint8_t *buf;
569  uint8_t *y_data, *u_data, *v_data, *a_data;
570  AVFrame *pic = ctx->frame;
571  int i, sf, slice_width_factor;
572  int slice_data_size, hdr_size;
573  int y_data_size, u_data_size, v_data_size, a_data_size;
574  int y_linesize, u_linesize, v_linesize, a_linesize;
575  int coff[4];
576  int ret;
577 
578  buf = ctx->slice_data[slice_num].index;
579  slice_data_size = ctx->slice_data[slice_num + 1].index - buf;
580 
581  slice_width_factor = av_log2(mbs_per_slice);
582 
583  y_data = pic->data[0];
584  u_data = pic->data[1];
585  v_data = pic->data[2];
586  a_data = pic->data[3];
587  y_linesize = pic->linesize[0];
588  u_linesize = pic->linesize[1];
589  v_linesize = pic->linesize[2];
590  a_linesize = pic->linesize[3];
591 
592  if (pic->interlaced_frame) {
593  if (!(pic_num ^ pic->top_field_first)) {
594  y_data += y_linesize;
595  u_data += u_linesize;
596  v_data += v_linesize;
597  if (a_data)
598  a_data += a_linesize;
599  }
600  y_linesize <<= 1;
601  u_linesize <<= 1;
602  v_linesize <<= 1;
603  a_linesize <<= 1;
604  }
605  y_data += (mb_y_pos << 4) * y_linesize + (mb_x_pos << 5);
606  u_data += (mb_y_pos << 4) * u_linesize + (mb_x_pos << ctx->mb_chroma_factor);
607  v_data += (mb_y_pos << 4) * v_linesize + (mb_x_pos << ctx->mb_chroma_factor);
608  if (a_data)
609  a_data += (mb_y_pos << 4) * a_linesize + (mb_x_pos << 5);
610 
611  if (slice_data_size < 6) {
612  av_log(avctx, AV_LOG_ERROR, "slice data too small\n");
613  return AVERROR_INVALIDDATA;
614  }
615 
616  /* parse slice header */
617  hdr_size = buf[0] >> 3;
618  coff[0] = hdr_size;
619  y_data_size = AV_RB16(buf + 2);
620  coff[1] = coff[0] + y_data_size;
621  u_data_size = AV_RB16(buf + 4);
622  coff[2] = coff[1] + u_data_size;
623  v_data_size = hdr_size > 7 ? AV_RB16(buf + 6) : slice_data_size - coff[2];
624  coff[3] = coff[2] + v_data_size;
625  a_data_size = ctx->alpha_info ? slice_data_size - coff[3] : 0;
626 
627  /* if V or alpha component size is negative that means that previous
628  component sizes are too large */
629  if (v_data_size < 0 || a_data_size < 0 || hdr_size < 6 || coff[3] > slice_data_size) {
630  av_log(avctx, AV_LOG_ERROR, "invalid data size\n");
631  return AVERROR_INVALIDDATA;
632  }
633 
634  sf = av_clip(buf[1], 1, 224);
635  sf = sf > 128 ? (sf - 96) << 2 : sf;
636 
637  /* scale quantization matrixes according with slice's scale factor */
638  /* TODO: this can be SIMD-optimized a lot */
639  if (ctx->qmat_changed || sf != td->prev_slice_sf) {
640  td->prev_slice_sf = sf;
641  for (i = 0; i < 64; i++) {
642  td->qmat_luma_scaled[ctx->dsp.idct_permutation[i]] = ctx->qmat_luma[i] * sf;
643  td->qmat_chroma_scaled[ctx->dsp.idct_permutation[i]] = ctx->qmat_chroma[i] * sf;
644  }
645  }
646 
647  /* decode luma plane */
648  ret = decode_slice_plane(ctx, td, buf + coff[0], y_data_size,
649  (uint16_t*) y_data, y_linesize,
650  mbs_per_slice, 4, slice_width_factor + 2,
651  td->qmat_luma_scaled, 0);
652 
653  if (ret < 0)
654  return ret;
655 
656  /* decode U chroma plane */
657  ret = decode_slice_plane(ctx, td, buf + coff[1], u_data_size,
658  (uint16_t*) u_data, u_linesize,
659  mbs_per_slice, ctx->num_chroma_blocks,
660  slice_width_factor + ctx->chroma_factor - 1,
661  td->qmat_chroma_scaled, 1);
662  if (ret < 0)
663  return ret;
664 
665  /* decode V chroma plane */
666  ret = decode_slice_plane(ctx, td, buf + coff[2], v_data_size,
667  (uint16_t*) v_data, v_linesize,
668  mbs_per_slice, ctx->num_chroma_blocks,
669  slice_width_factor + ctx->chroma_factor - 1,
670  td->qmat_chroma_scaled, 1);
671  if (ret < 0)
672  return ret;
673 
674  /* decode alpha plane if available */
675  if (a_data && a_data_size)
676  decode_alpha_plane(ctx, td, buf + coff[3], a_data_size,
677  (uint16_t*) a_data, a_linesize,
678  mbs_per_slice);
679 
680  return 0;
681 }
682 
683 
684 static int decode_picture(ProresContext *ctx, int pic_num,
685  AVCodecContext *avctx)
686 {
688 
689  slice_num = 0;
690 
691  ctx->pic_num = pic_num;
692  for (y_pos = 0; y_pos < ctx->num_y_mbs; y_pos++) {
693  slice_width = 1 << ctx->slice_width_factor;
694 
695  for (x_pos = 0; x_pos < ctx->num_x_mbs && slice_width;
696  x_pos += slice_width) {
697  while (ctx->num_x_mbs - x_pos < slice_width)
698  slice_width >>= 1;
699 
704 
705  slice_num++;
706  }
707  }
708 
709  return avctx->execute(avctx, decode_slice,
710  ctx->slice_data, NULL, slice_num,
711  sizeof(ctx->slice_data[0]));
712 }
713 
714 
715 #define MOVE_DATA_PTR(nbytes) buf += (nbytes); buf_size -= (nbytes)
716 
717 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
718  AVPacket *avpkt)
719 {
720  ProresContext *ctx = avctx->priv_data;
721  const uint8_t *buf = avpkt->data;
722  int buf_size = avpkt->size;
723  int frame_hdr_size, pic_num, pic_data_size;
724 
725  ctx->frame = data;
727  ctx->frame->key_frame = 1;
728 
729  /* check frame atom container */
730  if (buf_size < 28 || buf_size < AV_RB32(buf) ||
731  AV_RB32(buf + 4) != FRAME_ID) {
732  av_log(avctx, AV_LOG_ERROR, "invalid frame\n");
733  return AVERROR_INVALIDDATA;
734  }
735 
736  MOVE_DATA_PTR(8);
737 
738  frame_hdr_size = decode_frame_header(ctx, buf, buf_size, avctx);
739  if (frame_hdr_size < 0)
740  return AVERROR_INVALIDDATA;
741 
742  MOVE_DATA_PTR(frame_hdr_size);
743 
744  if (ff_get_buffer(avctx, ctx->frame, 0) < 0)
745  return -1;
746 
747  for (pic_num = 0; ctx->frame->interlaced_frame - pic_num + 1; pic_num++) {
748  pic_data_size = decode_picture_header(ctx, buf, buf_size, avctx);
749  if (pic_data_size < 0)
750  return AVERROR_INVALIDDATA;
751 
752  if (decode_picture(ctx, pic_num, avctx))
753  return -1;
754 
755  MOVE_DATA_PTR(pic_data_size);
756  }
757 
758  ctx->frame = NULL;
759  *got_frame = 1;
760 
761  return avpkt->size;
762 }
763 
764 
766 {
767  ProresContext *ctx = avctx->priv_data;
768 
769  av_freep(&ctx->slice_data);
770 
771  return 0;
772 }
773 
774 
776  .name = "prores_lgpl",
777  .long_name = NULL_IF_CONFIG_SMALL("Apple ProRes (iCodec Pro)"),
778  .type = AVMEDIA_TYPE_VIDEO,
779  .id = AV_CODEC_ID_PRORES,
780  .priv_data_size = sizeof(ProresContext),
781  .init = decode_init,
782  .close = decode_close,
783  .decode = decode_frame,
785 };
static int decode_picture_header(ProresContext *ctx, const uint8_t *buf, const int data_size, AVCodecContext *avctx)
#define NULL
Definition: coverity.c:32
const char const char void * val
Definition: avisynth_c.h:771
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
This structure describes decoded (raw) audio or video data.
Definition: frame.h:218
float re
Definition: fft.c:82
static int decode_frame_header(ProresContext *ctx, const uint8_t *buf, const int data_size, AVCodecContext *avctx)
#define AV_PIX_FMT_YUVA422P10
Definition: pixfmt.h:404
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:269
const uint8_t ff_prores_ac_codebook[7]
Definition: proresdata.c:55
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
enum AVColorRange color_range
MPEG vs JPEG YUV range.
Definition: avcodec.h:2148
Scantable.
Definition: idctdsp.h:31
int size
Definition: avcodec.h:1431
uint8_t qmat_chroma[64]
dequantization matrix for chroma
Definition: proresdec.h:43
av_cold void ff_proresdsp_init(ProresDSPContext *dsp, AVCodecContext *avctx)
Definition: proresdsp.c:58
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1727
int version
Definition: avisynth_c.h:766
uint8_t permutated[64]
Definition: idctdsp.h:33
uint8_t run
Definition: svq3.c:206
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:2741
static int decode_picture(ProresContext *ctx, int pic_num, AVCodecContext *avctx)
int scantable_type
-1 = uninitialized, 0 = progressive, 1/2 = interlaced
AVCodec.
Definition: avcodec.h:3408
#define MOVE_DATA_PTR(nbytes)
static int get_sbits(GetBitContext *s, int n)
Definition: get_bits.h:254
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:42
AVFrame * frame
Definition: proresdec.h:40
const uint8_t * index
pointers to the data of this slice
AVCodec ff_prores_lgpl_decoder
uint8_t
static int decode_slice(AVCodecContext *avctx, void *tdata)
#define av_cold
Definition: attributes.h:82
float delta
#define TOSIGNED(x)
#define AV_RB32
Definition: intreadwrite.h:130
static AVFrame * frame
const char data[16]
Definition: mxf.c:90
#define DECLARE_ALIGNED(n, t, v)
Declare a variable that is aligned in memory.
Definition: mem.h:112
#define height
uint8_t * data
Definition: avcodec.h:1430
const uint8_t ff_prores_run_to_cb_index[16]
Lookup tables for adaptive switching between codebooks according with previous run/level value...
Definition: proresdata.c:69
static int flags
Definition: log.c:55
const uint8_t ff_prores_lev_to_cb_index[10]
Definition: proresdata.c:72
bitstream reader API header.
int interlaced_frame
The content of the picture is interlaced.
Definition: frame.h:365
static int decode_ac_coeffs(GetBitContext *gb, int16_t *out, int blocks_per_slice, int plane_size_factor, const uint8_t *scan)
Decode AC coefficients for all blocks in a slice.
#define av_log(a,...)
#define MAX_PADDING
ProresThreadData * slice_data
int16_t qmat_chroma_scaled[64]
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:596
#define UPDATE_CACHE(name, gb)
Definition: get_bits.h:161
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
#define td
Definition: regdef.h:70
static const uint16_t mask[17]
Definition: lzw.c:38
#define AV_RB16
Definition: intreadwrite.h:53
#define AVERROR(e)
Definition: error.h:43
int skip_alpha
Skip processing alpha if supported by codec.
Definition: avcodec.h:3113
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:186
uint16_t width
Definition: gdv.c:47
const char * name
Name of the codec implementation.
Definition: avcodec.h:3415
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:371
#define CLOSE_READER(name, gb)
Definition: get_bits.h:132
static av_cold int decode_close(AVCodecContext *avctx)
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:301
#define FFMIN(a, b)
Definition: common.h:96
static void decode_dc_coeffs(GetBitContext *gb, int16_t *out, int nblocks)
Decode DC coefficients for all blocks in a slice.
int num_chroma_blocks
number of chrominance blocks in a macroblock
int width
picture width / height.
Definition: avcodec.h:1690
#define NEG_USR32(a, s)
Definition: mathops.h:166
static int decode_slice_plane(ProresContext *ctx, ProresThreadData *td, const uint8_t *buf, int data_size, uint16_t *out_ptr, int linesize, int mbs_per_slice, int blocks_per_mb, int plane_size_factor, const int16_t *qmat, int is_chroma)
Decode a slice plane (luma or chroma).
uint8_t idct_permutation[64]
Definition: proresdsp.h:34
AVFormatContext * ctx
Definition: movenc.c:48
const uint8_t ff_prores_dc_codebook[4]
Definition: proresdata.c:48
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
Definition: avcodec.h:2127
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
Definition: get_bits.h:304
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define LAST_SKIP_BITS(name, gb, num)
Definition: get_bits.h:182
static av_cold int decode_init(AVCodecContext *avctx)
int total_slices
total number of slices in a picture
#define AV_PIX_FMT_YUVA444P10
Definition: pixfmt.h:405
ProresDSPContext dsp
int alpha_info
Definition: proresdec.h:52
#define av_log2
Definition: intmath.h:83
#define FIRST_DC_CB
Definition: proresdata.h:33
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
Definition: avcodec.h:1019
static int decode_vlc_codeword(GetBitContext *gb, unsigned codebook)
Read an unsigned rice/exp golomb codeword.
const uint8_t ff_prores_interlaced_scan[64]
Definition: proresdata.c:36
Libavcodec external API header.
ScanTable scantable
static void decode_alpha_plane(ProresContext *ctx, ProresThreadData *td, const uint8_t *buf, int data_size, uint16_t *out_ptr, int linesize, int mbs_per_slice)
Decode alpha slice plane.
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:249
main external API structure.
Definition: avcodec.h:1518
const uint8_t ff_prores_progressive_scan[64]
Definition: proresdata.c:25
#define OPEN_READER(name, gb)
Definition: get_bits.h:121
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: decode.c:1891
void * buf
Definition: avisynth_c.h:690
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:321
enum AVColorSpace colorspace
YUV colorspace type.
Definition: avcodec.h:2141
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:2134
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:433
#define GET_CACHE(name, gb)
Definition: get_bits.h:198
static void unpack_alpha(GetBitContext *gb, uint16_t *dst, int num_coeffs, const int num_bits)
int pic_format
2 = 422, 3 = 444
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:369
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:232
uint8_t level
Definition: svq3.c:207
the normal 219*2^(n-8) "MPEG" YUV ranges
Definition: pixfmt.h:498
int prev_slice_sf
scalefactor of the previous decoded slice
common internal api header.
int qmat_changed
1 - global quantization matrices changed
#define PRORES_BITS_PER_SAMPLE
output precision of prores decoder
Definition: proresdsp.h:30
void * priv_data
Definition: avcodec.h:1545
av_cold void ff_init_scantable(uint8_t *permutation, ScanTable *st, const uint8_t *src_scantable)
Definition: idctdsp.c:29
int top_field_first
If the content is interlaced, is top field displayed first.
Definition: frame.h:370
int len
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:296
FILE * out
Definition: movenc.c:54
#define av_freep(p)
#define av_malloc_array(a, b)
uint8_t qmat_luma[64]
dequantization matrix for luma
Definition: proresdec.h:42
#define FRAME_ID
Definition: proresdata.h:28
int frame_type
0 = progressive, 1 = tff, 2 = bff
Definition: proresdec.h:41
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
Definition: avcodec.h:2809
This structure stores compressed data.
Definition: avcodec.h:1407
int16_t qmat_luma_scaled[64]
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:959
void(* idct_put)(uint16_t *out, ptrdiff_t linesize, int16_t *block, const int16_t *qmat)
Definition: proresdsp.h:35
int16_t blocks[8 *4 *64]