25 #define TEMPLATE_REMATRIX_FLT    27 #undef TEMPLATE_REMATRIX_FLT    29 #define TEMPLATE_REMATRIX_DBL    31 #undef TEMPLATE_REMATRIX_DBL    33 #define TEMPLATE_REMATRIX_S16    38 #undef TEMPLATE_REMATRIX_S16    40 #define TEMPLATE_REMATRIX_S32    42 #undef TEMPLATE_REMATRIX_S32    46 #define FRONT_CENTER           2    47 #define LOW_FREQUENCY          3    50 #define FRONT_LEFT_OF_CENTER   6    51 #define FRONT_RIGHT_OF_CENTER  7    56 #define TOP_FRONT_LEFT         12    57 #define TOP_FRONT_CENTER       13    58 #define TOP_FRONT_RIGHT        14    59 #define TOP_BACK_LEFT          15    60 #define TOP_BACK_CENTER        16    61 #define TOP_BACK_RIGHT         17    62 #define NUM_NAMED_CHANNELS     18    66     int nb_in, nb_out, 
in, 
out;
    76     for (out = 0; out < nb_out; out++) {
    77         for (in = 0; in < nb_in; in++)
    87     if(layout&(layout-1)) 
return 1;
   120                              double center_mix_level, 
double surround_mix_level,
   121                              double lfe_mix_level, 
double maxval,
   122                              double rematrix_volume, 
double *matrix_param,
   127     int64_t unaccounted, in_ch_layout, out_ch_layout;
   131      in_ch_layout = 
clean_layout(log_context,  in_ch_layout_param);
   132     out_ch_layout = 
clean_layout(log_context, out_ch_layout_param);
   139     if(    in_ch_layout == AV_CH_LAYOUT_STEREO_DOWNMIX
   140        && (out_ch_layout & AV_CH_LAYOUT_STEREO_DOWNMIX) == 0
   146         av_log(log_context, 
AV_LOG_ERROR, 
"Input channel layout '%s' is not supported\n", buf);
   152         av_log(log_context, 
AV_LOG_ERROR, 
"Output channel layout '%s' is not supported\n", buf);
   157         if(in_ch_layout & out_ch_layout & (1ULL<<i))
   161     unaccounted= in_ch_layout & ~out_ch_layout;
   169             if(in_ch_layout & AV_CH_LAYOUT_STEREO) {
   180         if(out_ch_layout & AV_CH_FRONT_CENTER){
   183             if(in_ch_layout & AV_CH_FRONT_CENTER)
   199                 if (unaccounted & (AV_CH_BACK_LEFT | AV_CH_SIDE_LEFT)) {
   210         }
else if(out_ch_layout & AV_CH_FRONT_CENTER){
   216         if(out_ch_layout & AV_CH_BACK_CENTER){
   220             if(in_ch_layout & AV_CH_SIDE_LEFT){
   242         }
else if(out_ch_layout & AV_CH_FRONT_CENTER){
   250         if(out_ch_layout & AV_CH_BACK_LEFT){
   253             if (in_ch_layout & AV_CH_BACK_LEFT) {
   260         }
else if(out_ch_layout & AV_CH_BACK_CENTER){
   278         }
else if(out_ch_layout & AV_CH_FRONT_CENTER){
   289         }
else if(out_ch_layout & AV_CH_FRONT_CENTER){
   297         if (out_ch_layout & AV_CH_FRONT_CENTER) {
   306     for(out_i=i=0; i<64; i++){
   309         if((out_ch_layout & (1ULL<<i)) == 0)
   312             if((in_ch_layout & (1ULL<<j)) == 0)
   315                 matrix_param[stride*out_i + in_i] = matrix[i][j];
   317                 matrix_param[stride*out_i + in_i] = i == j && (in_ch_layout & out_ch_layout & (1ULL<<i));
   318             sum += fabs(matrix_param[stride*out_i + in_i]);
   321         maxcoef= 
FFMAX(maxcoef, sum);
   324     if(rematrix_volume  < 0)
   325         maxcoef = -rematrix_volume;
   327     if(maxcoef > maxval || rematrix_volume  < 0){
   331                 matrix_param[stride*i + j] /= maxcoef;
   335     if(rematrix_volume > 0){
   338                 matrix_param[stride*i + j] *= rematrix_volume;
   403         for (i = 0; i < nb_out; i++) {
   407             for (j = 0; j < nb_in; j++) {
   408                 double target = s->
matrix[i][j] * 32768 + rem;
   413             maxsum = 
FFMAX(maxsum, sum);
   416         if (maxsum <= 32768) {
   430         for (i = 0; i < nb_out; i++)
   431             for (j = 0; j < nb_in; j++)
   442         for (i = 0; i < nb_out; i++)
   443             for (j = 0; j < nb_in; j++)
   458         for (i = 0; i < nb_out; i++) {
   461             for (j = 0; j < nb_in; j++) {
   462                 double target = s->
matrix[i][j] * 32768 + rem;
   498     int out_i, in_i, i, j;
   509         off = len1 * out->
bps;
   515     for(out_i=0; out_i<out->
ch_count; out_i++){
   523             if(s->
matrix[out_i][in_i]!=1.0){
   529                 memcpy(out->
ch[out_i], in->
ch[in_i], len*out->
bps);
   531                 out->
ch[out_i]= in->
ch[in_i];
   546                 for(i=0; i<
len; i++){
   550                         v+= ((
float*)in->
ch[in_i])[i] * s->
matrix_flt[out_i][in_i];
   552                     ((
float*)out->
ch[out_i])[i]= v;
   555                 for(i=0; i<
len; i++){
   559                         v+= ((
double*)in->
ch[in_i])[i] * s->
matrix[out_i][in_i];
   561                     ((
double*)out->
ch[out_i])[i]= v;
   564                 for(i=0; i<
len; i++){
   568                         v+= ((int16_t*)in->
ch[in_i])[i] * s->
matrix32[out_i][in_i];
   570                     ((int16_t*)out->
ch[out_i])[i]= (v + 16384)>>15;
 
struct AudioConvert * in_convert
input conversion context 
enum AVSampleFormat int_sample_fmt
internal sample format (AV_SAMPLE_FMT_FLTP or AV_SAMPLE_FMT_S16P) 
Audio buffer used for intermediate storage between conversion phases. 
#define FRONT_RIGHT_OF_CENTER
#define AV_CH_LAYOUT_SURROUND
int ch_count
number of channels 
int rematrix_custom
flag to indicate that a custom matrix has been defined 
int swri_rematrix(SwrContext *s, AudioData *out, AudioData *in, int len, int mustcopy)
#define AV_CH_LAYOUT_STEREO
av_cold int swr_build_matrix(uint64_t in_ch_layout_param, uint64_t out_ch_layout_param, double center_mix_level, double surround_mix_level, double lfe_mix_level, double maxval, double rematrix_volume, double *matrix_param, int stride, enum AVMatrixEncoding matrix_encoding, void *log_context)
Generate a channel mixing matrix. 
static int clean_layout(void *s, int64_t layout)
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array(). 
int av_get_channel_layout_nb_channels(uint64_t channel_layout)
Return the number of channels in the channel layout. 
#define av_assert0(cond)
assert() equivalent, that is always enabled. 
av_cold int swri_rematrix_init(SwrContext *s)
int user_out_ch_count
User set output channel count. 
enum AVSampleFormat fmt
sample format 
#define AV_CH_LOW_FREQUENCY
uint8_t * native_simd_one
#define AV_LOG_VERBOSE
Detailed information. 
void() mix_2_1_func_type(void *out, const void *in1, const void *in2, void *coeffp, integer index1, integer index2, integer len)
enum AVSampleFormat out_sample_fmt
output sample format 
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered. 
int matrix_encoding
matrixed stereo encoding 
float slev
surround mixing level 
int64_t user_in_ch_layout
User set input channel layout. 
The libswresample context. 
int swri_rematrix_init_x86(struct SwrContext *s)
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers. 
float clev
center mixing level 
simple assert() macros that are a bit more flexible than ISO C assert(). 
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
mix_2_1_func_type * mix_2_1_simd
#define NUM_NAMED_CHANNELS
int32_t matrix32[SWR_CH_MAX][SWR_CH_MAX]
17.15 fixed point rematrixing coefficients 
AudioData midbuf
intermediate audio data (postin/preout) 
audio channel layout utility functions 
#define AV_CH_LAYOUT_STEREO_DOWNMIX
#define FRONT_LEFT_OF_CENTER
int swr_set_matrix(struct SwrContext *s, const double *matrix, int stride)
Set a customized remix matrix. 
mix_1_1_func_type * mix_1_1_f
mix_1_1_func_type * mix_1_1_simd
int64_t out_ch_layout
output channel layout 
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
#define AV_CH_FRONT_LEFT_OF_CENTER
mix_any_func_type * mix_any_f
#define AV_CH_FRONT_CENTER
#define FF_ARRAY_ELEMS(a)
#define AV_CH_FRONT_RIGHT_OF_CENTER
void av_get_channel_layout_string(char *buf, int buf_size, int nb_channels, uint64_t channel_layout)
Return a description of a channel layout. 
int user_in_ch_count
User set input channel count. 
static av_cold int auto_matrix(SwrContext *s)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
float matrix_flt[SWR_CH_MAX][SWR_CH_MAX]
single precision floating point rematrixing coefficients 
static int sane_layout(int64_t layout)
#define AV_CH_BACK_CENTER
double matrix[SWR_CH_MAX][SWR_CH_MAX]
floating point rematrixing coefficients 
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample. 
int64_t in_ch_layout
input channel layout 
enum AVSampleFormat av_get_packed_sample_fmt(enum AVSampleFormat sample_fmt)
Get the packed alternative form of the given sample format. 
uint8_t * native_simd_matrix
uint64_t av_channel_layout_extract_channel(uint64_t channel_layout, int index)
Get the channel with the given index in channel_layout. 
float lfe_mix_level
LFE mixing level. 
void() mix_any_func_type(uint8_t **out, const uint8_t **in1, void *coeffp, integer len)
const char * av_get_channel_name(uint64_t channel)
Get the name of a given channel. 
av_cold void swri_rematrix_free(SwrContext *s)
float rematrix_maxval
maximum value for rematrixing output 
float rematrix_volume
rematrixing volume coefficient 
mix_2_1_func_type * mix_2_1_f
#define AV_CH_FRONT_RIGHT
static int even(int64_t layout)
void() mix_1_1_func_type(void *out, const void *in, void *coeffp, integer index, integer len)
uint8_t matrix_ch[SWR_CH_MAX][SWR_CH_MAX+1]
Lists of input channels per output channel that have non zero rematrixing coefficients. 
uint8_t * ch[SWR_CH_MAX]
samples buffer per channel 
int64_t user_out_ch_layout
User set output channel layout.