FFmpeg  4.0
rematrix.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at)
3  *
4  * This file is part of libswresample
5  *
6  * libswresample is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * libswresample is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with libswresample; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "swresample_internal.h"
22 #include "libavutil/avassert.h"
24 
25 #define TEMPLATE_REMATRIX_FLT
26 #include "rematrix_template.c"
27 #undef TEMPLATE_REMATRIX_FLT
28 
29 #define TEMPLATE_REMATRIX_DBL
30 #include "rematrix_template.c"
31 #undef TEMPLATE_REMATRIX_DBL
32 
33 #define TEMPLATE_REMATRIX_S16
34 #include "rematrix_template.c"
35 #define TEMPLATE_CLIP
36 #include "rematrix_template.c"
37 #undef TEMPLATE_CLIP
38 #undef TEMPLATE_REMATRIX_S16
39 
40 #define TEMPLATE_REMATRIX_S32
41 #include "rematrix_template.c"
42 #undef TEMPLATE_REMATRIX_S32
43 
44 #define FRONT_LEFT 0
45 #define FRONT_RIGHT 1
46 #define FRONT_CENTER 2
47 #define LOW_FREQUENCY 3
48 #define BACK_LEFT 4
49 #define BACK_RIGHT 5
50 #define FRONT_LEFT_OF_CENTER 6
51 #define FRONT_RIGHT_OF_CENTER 7
52 #define BACK_CENTER 8
53 #define SIDE_LEFT 9
54 #define SIDE_RIGHT 10
55 #define TOP_CENTER 11
56 #define TOP_FRONT_LEFT 12
57 #define TOP_FRONT_CENTER 13
58 #define TOP_FRONT_RIGHT 14
59 #define TOP_BACK_LEFT 15
60 #define TOP_BACK_CENTER 16
61 #define TOP_BACK_RIGHT 17
62 #define NUM_NAMED_CHANNELS 18
63 
64 int swr_set_matrix(struct SwrContext *s, const double *matrix, int stride)
65 {
66  int nb_in, nb_out, in, out;
67 
68  if (!s || s->in_convert) // s needs to be allocated but not initialized
69  return AVERROR(EINVAL);
70  memset(s->matrix, 0, sizeof(s->matrix));
71  memset(s->matrix_flt, 0, sizeof(s->matrix_flt));
72  nb_in = (s->user_in_ch_count > 0) ? s->user_in_ch_count :
74  nb_out = (s->user_out_ch_count > 0) ? s->user_out_ch_count :
76  for (out = 0; out < nb_out; out++) {
77  for (in = 0; in < nb_in; in++)
78  s->matrix_flt[out][in] = s->matrix[out][in] = matrix[in];
79  matrix += stride;
80  }
81  s->rematrix_custom = 1;
82  return 0;
83 }
84 
85 static int even(int64_t layout){
86  if(!layout) return 1;
87  if(layout&(layout-1)) return 1;
88  return 0;
89 }
90 
91 static int clean_layout(void *s, int64_t layout){
92  if(layout && layout != AV_CH_FRONT_CENTER && !(layout&(layout-1))) {
93  char buf[128];
94  av_get_channel_layout_string(buf, sizeof(buf), -1, layout);
95  av_log(s, AV_LOG_VERBOSE, "Treating %s as mono\n", buf);
96  return AV_CH_FRONT_CENTER;
97  }
98 
99  return layout;
100 }
101 
102 static int sane_layout(int64_t layout){
103  if(!(layout & AV_CH_LAYOUT_SURROUND)) // at least 1 front speaker
104  return 0;
105  if(!even(layout & (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT))) // no asymetric front
106  return 0;
107  if(!even(layout & (AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT))) // no asymetric side
108  return 0;
109  if(!even(layout & (AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT)))
110  return 0;
112  return 0;
114  return 0;
115 
116  return 1;
117 }
118 
119 av_cold int swr_build_matrix(uint64_t in_ch_layout_param, uint64_t out_ch_layout_param,
120  double center_mix_level, double surround_mix_level,
121  double lfe_mix_level, double maxval,
122  double rematrix_volume, double *matrix_param,
123  int stride, enum AVMatrixEncoding matrix_encoding, void *log_context)
124 {
125  int i, j, out_i;
126  double matrix[NUM_NAMED_CHANNELS][NUM_NAMED_CHANNELS]={{0}};
127  int64_t unaccounted, in_ch_layout, out_ch_layout;
128  double maxcoef=0;
129  char buf[128];
130 
131  in_ch_layout = clean_layout(log_context, in_ch_layout_param);
132  out_ch_layout = clean_layout(log_context, out_ch_layout_param);
133 
134  if( out_ch_layout == AV_CH_LAYOUT_STEREO_DOWNMIX
135  && (in_ch_layout & AV_CH_LAYOUT_STEREO_DOWNMIX) == 0
136  )
137  out_ch_layout = AV_CH_LAYOUT_STEREO;
138 
139  if( in_ch_layout == AV_CH_LAYOUT_STEREO_DOWNMIX
140  && (out_ch_layout & AV_CH_LAYOUT_STEREO_DOWNMIX) == 0
141  )
142  in_ch_layout = AV_CH_LAYOUT_STEREO;
143 
144  if(!sane_layout(in_ch_layout)){
145  av_get_channel_layout_string(buf, sizeof(buf), -1, in_ch_layout_param);
146  av_log(log_context, AV_LOG_ERROR, "Input channel layout '%s' is not supported\n", buf);
147  return AVERROR(EINVAL);
148  }
149 
150  if(!sane_layout(out_ch_layout)){
151  av_get_channel_layout_string(buf, sizeof(buf), -1, out_ch_layout_param);
152  av_log(log_context, AV_LOG_ERROR, "Output channel layout '%s' is not supported\n", buf);
153  return AVERROR(EINVAL);
154  }
155 
156  for(i=0; i<FF_ARRAY_ELEMS(matrix); i++){
157  if(in_ch_layout & out_ch_layout & (1ULL<<i))
158  matrix[i][i]= 1.0;
159  }
160 
161  unaccounted= in_ch_layout & ~out_ch_layout;
162 
163 //FIXME implement dolby surround
164 //FIXME implement full ac3
165 
166 
167  if(unaccounted & AV_CH_FRONT_CENTER){
168  if((out_ch_layout & AV_CH_LAYOUT_STEREO) == AV_CH_LAYOUT_STEREO){
169  if(in_ch_layout & AV_CH_LAYOUT_STEREO) {
170  matrix[ FRONT_LEFT][FRONT_CENTER]+= center_mix_level;
171  matrix[FRONT_RIGHT][FRONT_CENTER]+= center_mix_level;
172  } else {
173  matrix[ FRONT_LEFT][FRONT_CENTER]+= M_SQRT1_2;
175  }
176  }else
177  av_assert0(0);
178  }
179  if(unaccounted & AV_CH_LAYOUT_STEREO){
180  if(out_ch_layout & AV_CH_FRONT_CENTER){
181  matrix[FRONT_CENTER][ FRONT_LEFT]+= M_SQRT1_2;
183  if(in_ch_layout & AV_CH_FRONT_CENTER)
184  matrix[FRONT_CENTER][ FRONT_CENTER] = center_mix_level*sqrt(2);
185  }else
186  av_assert0(0);
187  }
188 
189  if(unaccounted & AV_CH_BACK_CENTER){
190  if(out_ch_layout & AV_CH_BACK_LEFT){
191  matrix[ BACK_LEFT][BACK_CENTER]+= M_SQRT1_2;
192  matrix[BACK_RIGHT][BACK_CENTER]+= M_SQRT1_2;
193  }else if(out_ch_layout & AV_CH_SIDE_LEFT){
194  matrix[ SIDE_LEFT][BACK_CENTER]+= M_SQRT1_2;
195  matrix[SIDE_RIGHT][BACK_CENTER]+= M_SQRT1_2;
196  }else if(out_ch_layout & AV_CH_FRONT_LEFT){
197  if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY ||
198  matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
199  if (unaccounted & (AV_CH_BACK_LEFT | AV_CH_SIDE_LEFT)) {
200  matrix[FRONT_LEFT ][BACK_CENTER] -= surround_mix_level * M_SQRT1_2;
201  matrix[FRONT_RIGHT][BACK_CENTER] += surround_mix_level * M_SQRT1_2;
202  } else {
203  matrix[FRONT_LEFT ][BACK_CENTER] -= surround_mix_level;
204  matrix[FRONT_RIGHT][BACK_CENTER] += surround_mix_level;
205  }
206  } else {
207  matrix[ FRONT_LEFT][BACK_CENTER]+= surround_mix_level * M_SQRT1_2;
208  matrix[FRONT_RIGHT][BACK_CENTER]+= surround_mix_level * M_SQRT1_2;
209  }
210  }else if(out_ch_layout & AV_CH_FRONT_CENTER){
211  matrix[ FRONT_CENTER][BACK_CENTER]+= surround_mix_level * M_SQRT1_2;
212  }else
213  av_assert0(0);
214  }
215  if(unaccounted & AV_CH_BACK_LEFT){
216  if(out_ch_layout & AV_CH_BACK_CENTER){
217  matrix[BACK_CENTER][ BACK_LEFT]+= M_SQRT1_2;
218  matrix[BACK_CENTER][BACK_RIGHT]+= M_SQRT1_2;
219  }else if(out_ch_layout & AV_CH_SIDE_LEFT){
220  if(in_ch_layout & AV_CH_SIDE_LEFT){
221  matrix[ SIDE_LEFT][ BACK_LEFT]+= M_SQRT1_2;
222  matrix[SIDE_RIGHT][BACK_RIGHT]+= M_SQRT1_2;
223  }else{
224  matrix[ SIDE_LEFT][ BACK_LEFT]+= 1.0;
225  matrix[SIDE_RIGHT][BACK_RIGHT]+= 1.0;
226  }
227  }else if(out_ch_layout & AV_CH_FRONT_LEFT){
228  if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
229  matrix[FRONT_LEFT ][BACK_LEFT ] -= surround_mix_level * M_SQRT1_2;
230  matrix[FRONT_LEFT ][BACK_RIGHT] -= surround_mix_level * M_SQRT1_2;
231  matrix[FRONT_RIGHT][BACK_LEFT ] += surround_mix_level * M_SQRT1_2;
232  matrix[FRONT_RIGHT][BACK_RIGHT] += surround_mix_level * M_SQRT1_2;
233  } else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
234  matrix[FRONT_LEFT ][BACK_LEFT ] -= surround_mix_level * SQRT3_2;
235  matrix[FRONT_LEFT ][BACK_RIGHT] -= surround_mix_level * M_SQRT1_2;
236  matrix[FRONT_RIGHT][BACK_LEFT ] += surround_mix_level * M_SQRT1_2;
237  matrix[FRONT_RIGHT][BACK_RIGHT] += surround_mix_level * SQRT3_2;
238  } else {
239  matrix[ FRONT_LEFT][ BACK_LEFT] += surround_mix_level;
240  matrix[FRONT_RIGHT][BACK_RIGHT] += surround_mix_level;
241  }
242  }else if(out_ch_layout & AV_CH_FRONT_CENTER){
243  matrix[ FRONT_CENTER][BACK_LEFT ]+= surround_mix_level*M_SQRT1_2;
244  matrix[ FRONT_CENTER][BACK_RIGHT]+= surround_mix_level*M_SQRT1_2;
245  }else
246  av_assert0(0);
247  }
248 
249  if(unaccounted & AV_CH_SIDE_LEFT){
250  if(out_ch_layout & AV_CH_BACK_LEFT){
251  /* if back channels do not exist in the input, just copy side
252  channels to back channels, otherwise mix side into back */
253  if (in_ch_layout & AV_CH_BACK_LEFT) {
254  matrix[BACK_LEFT ][SIDE_LEFT ] += M_SQRT1_2;
255  matrix[BACK_RIGHT][SIDE_RIGHT] += M_SQRT1_2;
256  } else {
257  matrix[BACK_LEFT ][SIDE_LEFT ] += 1.0;
258  matrix[BACK_RIGHT][SIDE_RIGHT] += 1.0;
259  }
260  }else if(out_ch_layout & AV_CH_BACK_CENTER){
261  matrix[BACK_CENTER][ SIDE_LEFT]+= M_SQRT1_2;
262  matrix[BACK_CENTER][SIDE_RIGHT]+= M_SQRT1_2;
263  }else if(out_ch_layout & AV_CH_FRONT_LEFT){
264  if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
265  matrix[FRONT_LEFT ][SIDE_LEFT ] -= surround_mix_level * M_SQRT1_2;
266  matrix[FRONT_LEFT ][SIDE_RIGHT] -= surround_mix_level * M_SQRT1_2;
267  matrix[FRONT_RIGHT][SIDE_LEFT ] += surround_mix_level * M_SQRT1_2;
268  matrix[FRONT_RIGHT][SIDE_RIGHT] += surround_mix_level * M_SQRT1_2;
269  } else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
270  matrix[FRONT_LEFT ][SIDE_LEFT ] -= surround_mix_level * SQRT3_2;
271  matrix[FRONT_LEFT ][SIDE_RIGHT] -= surround_mix_level * M_SQRT1_2;
272  matrix[FRONT_RIGHT][SIDE_LEFT ] += surround_mix_level * M_SQRT1_2;
273  matrix[FRONT_RIGHT][SIDE_RIGHT] += surround_mix_level * SQRT3_2;
274  } else {
275  matrix[ FRONT_LEFT][ SIDE_LEFT] += surround_mix_level;
276  matrix[FRONT_RIGHT][SIDE_RIGHT] += surround_mix_level;
277  }
278  }else if(out_ch_layout & AV_CH_FRONT_CENTER){
279  matrix[ FRONT_CENTER][SIDE_LEFT ]+= surround_mix_level * M_SQRT1_2;
280  matrix[ FRONT_CENTER][SIDE_RIGHT]+= surround_mix_level * M_SQRT1_2;
281  }else
282  av_assert0(0);
283  }
284 
285  if(unaccounted & AV_CH_FRONT_LEFT_OF_CENTER){
286  if(out_ch_layout & AV_CH_FRONT_LEFT){
287  matrix[ FRONT_LEFT][ FRONT_LEFT_OF_CENTER]+= 1.0;
288  matrix[FRONT_RIGHT][FRONT_RIGHT_OF_CENTER]+= 1.0;
289  }else if(out_ch_layout & AV_CH_FRONT_CENTER){
292  }else
293  av_assert0(0);
294  }
295  /* mix LFE into front left/right or center */
296  if (unaccounted & AV_CH_LOW_FREQUENCY) {
297  if (out_ch_layout & AV_CH_FRONT_CENTER) {
298  matrix[FRONT_CENTER][LOW_FREQUENCY] += lfe_mix_level;
299  } else if (out_ch_layout & AV_CH_FRONT_LEFT) {
300  matrix[FRONT_LEFT ][LOW_FREQUENCY] += lfe_mix_level * M_SQRT1_2;
301  matrix[FRONT_RIGHT][LOW_FREQUENCY] += lfe_mix_level * M_SQRT1_2;
302  } else
303  av_assert0(0);
304  }
305 
306  for(out_i=i=0; i<64; i++){
307  double sum=0;
308  int in_i=0;
309  if((out_ch_layout & (1ULL<<i)) == 0)
310  continue;
311  for(j=0; j<64; j++){
312  if((in_ch_layout & (1ULL<<j)) == 0)
313  continue;
314  if (i < FF_ARRAY_ELEMS(matrix) && j < FF_ARRAY_ELEMS(matrix[0]))
315  matrix_param[stride*out_i + in_i] = matrix[i][j];
316  else
317  matrix_param[stride*out_i + in_i] = i == j && (in_ch_layout & out_ch_layout & (1ULL<<i));
318  sum += fabs(matrix_param[stride*out_i + in_i]);
319  in_i++;
320  }
321  maxcoef= FFMAX(maxcoef, sum);
322  out_i++;
323  }
324  if(rematrix_volume < 0)
325  maxcoef = -rematrix_volume;
326 
327  if(maxcoef > maxval || rematrix_volume < 0){
328  maxcoef /= maxval;
329  for(i=0; i<SWR_CH_MAX; i++)
330  for(j=0; j<SWR_CH_MAX; j++){
331  matrix_param[stride*i + j] /= maxcoef;
332  }
333  }
334 
335  if(rematrix_volume > 0){
336  for(i=0; i<SWR_CH_MAX; i++)
337  for(j=0; j<SWR_CH_MAX; j++){
338  matrix_param[stride*i + j] *= rematrix_volume;
339  }
340  }
341 
342  av_log(log_context, AV_LOG_DEBUG, "Matrix coefficients:\n");
343  for(i=0; i<av_get_channel_layout_nb_channels(out_ch_layout); i++){
344  const char *c =
346  av_log(log_context, AV_LOG_DEBUG, "%s: ", c ? c : "?");
347  for(j=0; j<av_get_channel_layout_nb_channels(in_ch_layout); j++){
349  av_log(log_context, AV_LOG_DEBUG, "%s:%f ", c ? c : "?", matrix_param[stride*i + j]);
350  }
351  av_log(log_context, AV_LOG_DEBUG, "\n");
352  }
353  return 0;
354 }
355 
357 {
358  double maxval;
359  int ret;
360 
361  if (s->rematrix_maxval > 0) {
362  maxval = s->rematrix_maxval;
365  maxval = 1.0;
366  } else
367  maxval = INT_MAX;
368 
369  memset(s->matrix, 0, sizeof(s->matrix));
371  s->clev, s->slev, s->lfe_mix_level,
372  maxval, s->rematrix_volume, (double*)s->matrix,
373  s->matrix[1] - s->matrix[0], s->matrix_encoding, s);
374 
375  if (ret >= 0 && s->int_sample_fmt == AV_SAMPLE_FMT_FLTP) {
376  int i, j;
377  for (i = 0; i < FF_ARRAY_ELEMS(s->matrix[0]); i++)
378  for (j = 0; j < FF_ARRAY_ELEMS(s->matrix[0]); j++)
379  s->matrix_flt[i][j] = s->matrix[i][j];
380  }
381 
382  return ret;
383 }
384 
386  int i, j;
389 
390  s->mix_any_f = NULL;
391 
392  if (!s->rematrix_custom) {
393  int r = auto_matrix(s);
394  if (r)
395  return r;
396  }
397  if (s->midbuf.fmt == AV_SAMPLE_FMT_S16P){
398  int maxsum = 0;
399  s->native_matrix = av_calloc(nb_in * nb_out, sizeof(int));
400  s->native_one = av_mallocz(sizeof(int));
401  if (!s->native_matrix || !s->native_one)
402  return AVERROR(ENOMEM);
403  for (i = 0; i < nb_out; i++) {
404  double rem = 0;
405  int sum = 0;
406 
407  for (j = 0; j < nb_in; j++) {
408  double target = s->matrix[i][j] * 32768 + rem;
409  ((int*)s->native_matrix)[i * nb_in + j] = lrintf(target);
410  rem += target - ((int*)s->native_matrix)[i * nb_in + j];
411  sum += FFABS(((int*)s->native_matrix)[i * nb_in + j]);
412  }
413  maxsum = FFMAX(maxsum, sum);
414  }
415  *((int*)s->native_one) = 32768;
416  if (maxsum <= 32768) {
417  s->mix_1_1_f = (mix_1_1_func_type*)copy_s16;
418  s->mix_2_1_f = (mix_2_1_func_type*)sum2_s16;
419  s->mix_any_f = (mix_any_func_type*)get_mix_any_func_s16(s);
420  } else {
421  s->mix_1_1_f = (mix_1_1_func_type*)copy_clip_s16;
422  s->mix_2_1_f = (mix_2_1_func_type*)sum2_clip_s16;
423  s->mix_any_f = (mix_any_func_type*)get_mix_any_func_clip_s16(s);
424  }
425  }else if(s->midbuf.fmt == AV_SAMPLE_FMT_FLTP){
426  s->native_matrix = av_calloc(nb_in * nb_out, sizeof(float));
427  s->native_one = av_mallocz(sizeof(float));
428  if (!s->native_matrix || !s->native_one)
429  return AVERROR(ENOMEM);
430  for (i = 0; i < nb_out; i++)
431  for (j = 0; j < nb_in; j++)
432  ((float*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
433  *((float*)s->native_one) = 1.0;
434  s->mix_1_1_f = (mix_1_1_func_type*)copy_float;
435  s->mix_2_1_f = (mix_2_1_func_type*)sum2_float;
436  s->mix_any_f = (mix_any_func_type*)get_mix_any_func_float(s);
437  }else if(s->midbuf.fmt == AV_SAMPLE_FMT_DBLP){
438  s->native_matrix = av_calloc(nb_in * nb_out, sizeof(double));
439  s->native_one = av_mallocz(sizeof(double));
440  if (!s->native_matrix || !s->native_one)
441  return AVERROR(ENOMEM);
442  for (i = 0; i < nb_out; i++)
443  for (j = 0; j < nb_in; j++)
444  ((double*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
445  *((double*)s->native_one) = 1.0;
446  s->mix_1_1_f = (mix_1_1_func_type*)copy_double;
447  s->mix_2_1_f = (mix_2_1_func_type*)sum2_double;
448  s->mix_any_f = (mix_any_func_type*)get_mix_any_func_double(s);
449  }else if(s->midbuf.fmt == AV_SAMPLE_FMT_S32P){
450  s->native_one = av_mallocz(sizeof(int));
451  if (!s->native_one)
452  return AVERROR(ENOMEM);
453  s->native_matrix = av_calloc(nb_in * nb_out, sizeof(int));
454  if (!s->native_matrix) {
455  av_freep(&s->native_one);
456  return AVERROR(ENOMEM);
457  }
458  for (i = 0; i < nb_out; i++) {
459  double rem = 0;
460 
461  for (j = 0; j < nb_in; j++) {
462  double target = s->matrix[i][j] * 32768 + rem;
463  ((int*)s->native_matrix)[i * nb_in + j] = lrintf(target);
464  rem += target - ((int*)s->native_matrix)[i * nb_in + j];
465  }
466  }
467  *((int*)s->native_one) = 32768;
468  s->mix_1_1_f = (mix_1_1_func_type*)copy_s32;
469  s->mix_2_1_f = (mix_2_1_func_type*)sum2_s32;
470  s->mix_any_f = (mix_any_func_type*)get_mix_any_func_s32(s);
471  }else
472  av_assert0(0);
473  //FIXME quantize for integeres
474  for (i = 0; i < SWR_CH_MAX; i++) {
475  int ch_in=0;
476  for (j = 0; j < SWR_CH_MAX; j++) {
477  s->matrix32[i][j]= lrintf(s->matrix[i][j] * 32768);
478  if(s->matrix[i][j])
479  s->matrix_ch[i][++ch_in]= j;
480  }
481  s->matrix_ch[i][0]= ch_in;
482  }
483 
484  if(HAVE_X86ASM && HAVE_MMX)
485  return swri_rematrix_init_x86(s);
486 
487  return 0;
488 }
489 
491  av_freep(&s->native_matrix);
492  av_freep(&s->native_one);
495 }
496 
497 int swri_rematrix(SwrContext *s, AudioData *out, AudioData *in, int len, int mustcopy){
498  int out_i, in_i, i, j;
499  int len1 = 0;
500  int off = 0;
501 
502  if(s->mix_any_f) {
503  s->mix_any_f(out->ch, (const uint8_t **)in->ch, s->native_matrix, len);
504  return 0;
505  }
506 
507  if(s->mix_2_1_simd || s->mix_1_1_simd){
508  len1= len&~15;
509  off = len1 * out->bps;
510  }
511 
513  av_assert0(!s-> in_ch_layout || in ->ch_count == av_get_channel_layout_nb_channels(s-> in_ch_layout));
514 
515  for(out_i=0; out_i<out->ch_count; out_i++){
516  switch(s->matrix_ch[out_i][0]){
517  case 0:
518  if(mustcopy)
519  memset(out->ch[out_i], 0, len * av_get_bytes_per_sample(s->int_sample_fmt));
520  break;
521  case 1:
522  in_i= s->matrix_ch[out_i][1];
523  if(s->matrix[out_i][in_i]!=1.0){
524  if(s->mix_1_1_simd && len1)
525  s->mix_1_1_simd(out->ch[out_i] , in->ch[in_i] , s->native_simd_matrix, in->ch_count*out_i + in_i, len1);
526  if(len != len1)
527  s->mix_1_1_f (out->ch[out_i]+off, in->ch[in_i]+off, s->native_matrix, in->ch_count*out_i + in_i, len-len1);
528  }else if(mustcopy){
529  memcpy(out->ch[out_i], in->ch[in_i], len*out->bps);
530  }else{
531  out->ch[out_i]= in->ch[in_i];
532  }
533  break;
534  case 2: {
535  int in_i1 = s->matrix_ch[out_i][1];
536  int in_i2 = s->matrix_ch[out_i][2];
537  if(s->mix_2_1_simd && len1)
538  s->mix_2_1_simd(out->ch[out_i] , in->ch[in_i1] , in->ch[in_i2] , s->native_simd_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1);
539  else
540  s->mix_2_1_f (out->ch[out_i] , in->ch[in_i1] , in->ch[in_i2] , s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1);
541  if(len != len1)
542  s->mix_2_1_f (out->ch[out_i]+off, in->ch[in_i1]+off, in->ch[in_i2]+off, s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len-len1);
543  break;}
544  default:
546  for(i=0; i<len; i++){
547  float v=0;
548  for(j=0; j<s->matrix_ch[out_i][0]; j++){
549  in_i= s->matrix_ch[out_i][1+j];
550  v+= ((float*)in->ch[in_i])[i] * s->matrix_flt[out_i][in_i];
551  }
552  ((float*)out->ch[out_i])[i]= v;
553  }
554  }else if(s->int_sample_fmt == AV_SAMPLE_FMT_DBLP){
555  for(i=0; i<len; i++){
556  double v=0;
557  for(j=0; j<s->matrix_ch[out_i][0]; j++){
558  in_i= s->matrix_ch[out_i][1+j];
559  v+= ((double*)in->ch[in_i])[i] * s->matrix[out_i][in_i];
560  }
561  ((double*)out->ch[out_i])[i]= v;
562  }
563  }else{
564  for(i=0; i<len; i++){
565  int v=0;
566  for(j=0; j<s->matrix_ch[out_i][0]; j++){
567  in_i= s->matrix_ch[out_i][1+j];
568  v+= ((int16_t*)in->ch[in_i])[i] * s->matrix32[out_i][in_i];
569  }
570  ((int16_t*)out->ch[out_i])[i]= (v + 16384)>>15;
571  }
572  }
573  }
574  }
575  return 0;
576 }
float, planar
Definition: samplefmt.h:69
struct AudioConvert * in_convert
input conversion context
#define NULL
Definition: coverity.c:32
#define BACK_RIGHT
Definition: rematrix.c:49
const char * s
Definition: avisynth_c.h:768
#define FRONT_RIGHT
Definition: rematrix.c:45
enum AVSampleFormat int_sample_fmt
internal sample format (AV_SAMPLE_FMT_FLTP or AV_SAMPLE_FMT_S16P)
Audio buffer used for intermediate storage between conversion phases.
Definition: audio_data.h:37
#define FRONT_RIGHT_OF_CENTER
Definition: rematrix.c:51
#define AV_CH_LAYOUT_SURROUND
int ch_count
number of channels
#define SWR_CH_MAX
Definition: af_amerge.c:38
#define M_SQRT1_2
Definition: mathematics.h:58
int rematrix_custom
flag to indicate that a custom matrix has been defined
int swri_rematrix(SwrContext *s, AudioData *out, AudioData *in, int len, int mustcopy)
Definition: rematrix.c:497
double, planar
Definition: samplefmt.h:70
#define LOW_FREQUENCY
Definition: rematrix.c:47
#define HAVE_X86ASM
Definition: config.h:195
#define AV_CH_LAYOUT_STEREO
#define SQRT3_2
int stride
Definition: mace.c:144
#define SIDE_RIGHT
Definition: rematrix.c:54
av_cold int swr_build_matrix(uint64_t in_ch_layout_param, uint64_t out_ch_layout_param, double center_mix_level, double surround_mix_level, double lfe_mix_level, double maxval, double rematrix_volume, double *matrix_param, int stride, enum AVMatrixEncoding matrix_encoding, void *log_context)
Generate a channel mixing matrix.
Definition: rematrix.c:119
static int clean_layout(void *s, int64_t layout)
Definition: rematrix.c:91
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
Definition: mem.c:244
int av_get_channel_layout_nb_channels(uint64_t channel_layout)
Return the number of channels in the channel layout.
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
av_cold int swri_rematrix_init(SwrContext *s)
Definition: rematrix.c:385
uint8_t
#define av_cold
Definition: attributes.h:82
int user_out_ch_count
User set output channel count.
enum AVSampleFormat fmt
sample format
#define BACK_CENTER
Definition: rematrix.c:52
#define AV_CH_LOW_FREQUENCY
uint8_t * native_simd_one
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:192
#define lrintf(x)
Definition: libm_mips.h:70
#define AV_CH_BACK_LEFT
void() mix_2_1_func_type(void *out, const void *in1, const void *in2, void *coeffp, integer index1, integer index2, integer len)
enum AVSampleFormat out_sample_fmt
output sample format
#define av_log(a,...)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int matrix_encoding
matrixed stereo encoding
float slev
surround mixing level
#define FRONT_CENTER
Definition: rematrix.c:46
#define AVERROR(e)
Definition: error.h:43
int64_t user_in_ch_layout
User set input channel layout.
The libswresample context.
#define SIDE_LEFT
Definition: rematrix.c:53
int swri_rematrix_init_x86(struct SwrContext *s)
const char * r
Definition: vf_curves.c:111
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
float clev
center mixing level
simple assert() macros that are a bit more flexible than ISO C assert().
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:236
mix_2_1_func_type * mix_2_1_simd
#define FFMAX(a, b)
Definition: common.h:94
#define NUM_NAMED_CHANNELS
Definition: rematrix.c:62
int32_t matrix32[SWR_CH_MAX][SWR_CH_MAX]
17.15 fixed point rematrixing coefficients
AudioData midbuf
intermediate audio data (postin/preout)
audio channel layout utility functions
#define AV_CH_LAYOUT_STEREO_DOWNMIX
#define FRONT_LEFT_OF_CENTER
Definition: rematrix.c:50
signed 32 bits, planar
Definition: samplefmt.h:68
int swr_set_matrix(struct SwrContext *s, const double *matrix, int stride)
Set a customized remix matrix.
Definition: rematrix.c:64
mix_1_1_func_type * mix_1_1_f
mix_1_1_func_type * mix_1_1_simd
int64_t out_ch_layout
output channel layout
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
int bps
bytes per sample
#define AV_CH_FRONT_LEFT_OF_CENTER
uint8_t * native_matrix
mix_any_func_type * mix_any_f
#define AV_CH_FRONT_CENTER
#define FF_ARRAY_ELEMS(a)
#define AV_CH_FRONT_RIGHT_OF_CENTER
void av_get_channel_layout_string(char *buf, int buf_size, int nb_channels, uint64_t channel_layout)
Return a description of a channel layout.
int user_in_ch_count
User set input channel count.
static av_cold int auto_matrix(SwrContext *s)
Definition: rematrix.c:356
#define AV_CH_FRONT_LEFT
void * buf
Definition: avisynth_c.h:690
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
float matrix_flt[SWR_CH_MAX][SWR_CH_MAX]
single precision floating point rematrixing coefficients
static int sane_layout(int64_t layout)
Definition: rematrix.c:102
#define BACK_LEFT
Definition: rematrix.c:48
#define AV_CH_BACK_CENTER
double matrix[SWR_CH_MAX][SWR_CH_MAX]
floating point rematrixing coefficients
uint8_t * native_one
#define AV_CH_SIDE_RIGHT
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
Definition: samplefmt.c:106
int64_t in_ch_layout
input channel layout
enum AVSampleFormat av_get_packed_sample_fmt(enum AVSampleFormat sample_fmt)
Get the packed alternative form of the given sample format.
Definition: samplefmt.c:75
uint8_t * native_simd_matrix
uint64_t av_channel_layout_extract_channel(uint64_t channel_layout, int index)
Get the channel with the given index in channel_layout.
static double c[64]
float lfe_mix_level
LFE mixing level.
void() mix_any_func_type(uint8_t **out, const uint8_t **in1, void *coeffp, integer len)
const char * av_get_channel_name(uint64_t channel)
Get the name of a given channel.
av_cold void swri_rematrix_free(SwrContext *s)
Definition: rematrix.c:490
int len
float rematrix_maxval
maximum value for rematrixing output
float rematrix_volume
rematrixing volume coefficient
uint64_t layout
mix_2_1_func_type * mix_2_1_f
#define AV_CH_FRONT_RIGHT
FILE * out
Definition: movenc.c:54
#define av_freep(p)
signed 16 bits, planar
Definition: samplefmt.h:67
static int even(int64_t layout)
Definition: rematrix.c:85
void() mix_1_1_func_type(void *out, const void *in, void *coeffp, integer index, integer len)
AVMatrixEncoding
#define AV_CH_SIDE_LEFT
#define FRONT_LEFT
Definition: rematrix.c:44
uint8_t matrix_ch[SWR_CH_MAX][SWR_CH_MAX+1]
Lists of input channels per output channel that have non zero rematrixing coefficients.
uint8_t * ch[SWR_CH_MAX]
samples buffer per channel
int64_t user_out_ch_layout
User set output channel layout.
#define HAVE_MMX
Definition: config.h:63
#define AV_CH_BACK_RIGHT