48 static const uint64_t
K512[80] = {
49 UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
50 UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
51 UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
52 UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
53 UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
54 UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
55 UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
56 UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
57 UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
58 UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
59 UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
60 UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
61 UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
62 UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
63 UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
64 UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
65 UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
66 UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
67 UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
68 UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
69 UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
70 UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
71 UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
72 UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
73 UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
74 UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
75 UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
76 UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
77 UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
78 UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
79 UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
80 UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
81 UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
82 UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
83 UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
84 UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
85 UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
86 UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
87 UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
88 UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817),
91 #define ror(value, bits) (((value) >> (bits)) | ((value) << (64 - (bits)))) 93 #define Ch(x,y,z) (((x) & ((y) ^ (z))) ^ (z)) 94 #define Maj(z,y,x) ((((x) | (y)) & (z)) | ((x) & (y))) 96 #define Sigma0_512(x) (ror((x), 28) ^ ror((x), 34) ^ ror((x), 39)) 97 #define Sigma1_512(x) (ror((x), 14) ^ ror((x), 18) ^ ror((x), 41)) 98 #define sigma0_512(x) (ror((x), 1) ^ ror((x), 8) ^ ((x) >> 7)) 99 #define sigma1_512(x) (ror((x), 19) ^ ror((x), 61) ^ ((x) >> 6)) 101 #define blk0(i) (block[i] = AV_RB64(buffer + 8 * (i))) 102 #define blk(i) (block[i] = block[i - 16] + sigma0_512(block[i - 15]) + \ 103 sigma1_512(block[i - 2]) + block[i - 7]) 105 #define ROUND512(a,b,c,d,e,f,g,h) \ 106 T1 += (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[i]; \ 108 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ 111 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ 113 ROUND512(a,b,c,d,e,f,g,h) 115 #define ROUND512_16_TO_80(a,b,c,d,e,f,g,h) \ 117 ROUND512(a,b,c,d,e,f,g,h) 121 uint64_t
a,
b,
c, d, e, f,
g,
h;
135 for (i = 0; i < 80; i++) {
155 ROUND512_0_TO_15(a, b, c, d, e, f, g, h); \ 156 ROUND512_0_TO_15(h, a, b, c, d, e, f, g); \ 157 ROUND512_0_TO_15(g, h, a, b, c, d, e, f); \ 158 ROUND512_0_TO_15(f, g, h, a, b, c, d, e); \ 159 ROUND512_0_TO_15(e, f, g, h, a, b, c, d); \ 160 ROUND512_0_TO_15(d, e, f, g, h, a, b, c); \ 161 ROUND512_0_TO_15(c, d, e, f, g, h, a, b); \ 162 ROUND512_0_TO_15(b, c, d, e, f, g, h, a) 168 ROUND512_16_TO_80(a, b, c, d, e, f, g, h); \ 169 ROUND512_16_TO_80(h, a, b, c, d, e, f, g); \ 170 ROUND512_16_TO_80(g, h, a, b, c, d, e, f); \ 171 ROUND512_16_TO_80(f, g, h, a, b, c, d, e); \ 172 ROUND512_16_TO_80(e, f, g, h, a, b, c, d); \ 173 ROUND512_16_TO_80(d, e, f, g, h, a, b, c); \ 174 ROUND512_16_TO_80(c, d, e, f, g, h, a, b); \ 175 ROUND512_16_TO_80(b, c, d, e, f, g, h, a) 196 ctx->
state[0] = UINT64_C(0x8C3D37C819544DA2);
197 ctx->
state[1] = UINT64_C(0x73E1996689DCD4D6);
198 ctx->
state[2] = UINT64_C(0x1DFAB7AE32FF9C82);
199 ctx->
state[3] = UINT64_C(0x679DD514582F9FCF);
200 ctx->
state[4] = UINT64_C(0x0F6D2B697BD44DA8);
201 ctx->
state[5] = UINT64_C(0x77E36F7304C48942);
202 ctx->
state[6] = UINT64_C(0x3F9D85A86A1D36C8);
203 ctx->
state[7] = UINT64_C(0x1112E6AD91D692A1);
206 ctx->
state[0] = UINT64_C(0x22312194FC2BF72C);
207 ctx->
state[1] = UINT64_C(0x9F555FA3C84C64C2);
208 ctx->
state[2] = UINT64_C(0x2393B86B6F53B151);
209 ctx->
state[3] = UINT64_C(0x963877195940EABD);
210 ctx->
state[4] = UINT64_C(0x96283EE2A88EFFE3);
211 ctx->
state[5] = UINT64_C(0xBE5E1E2553863992);
212 ctx->
state[6] = UINT64_C(0x2B0199FC2C85B8AA);
213 ctx->
state[7] = UINT64_C(0x0EB72DDC81C52CA2);
216 ctx->
state[0] = UINT64_C(0xCBBB9D5DC1059ED8);
217 ctx->
state[1] = UINT64_C(0x629A292A367CD507);
218 ctx->
state[2] = UINT64_C(0x9159015A3070DD17);
219 ctx->
state[3] = UINT64_C(0x152FECD8F70E5939);
220 ctx->
state[4] = UINT64_C(0x67332667FFC00B31);
221 ctx->
state[5] = UINT64_C(0x8EB44A8768581511);
222 ctx->
state[6] = UINT64_C(0xDB0C2E0D64F98FA7);
223 ctx->
state[7] = UINT64_C(0x47B5481DBEFA4FA4);
226 ctx->
state[0] = UINT64_C(0x6A09E667F3BCC908);
227 ctx->
state[1] = UINT64_C(0xBB67AE8584CAA73B);
228 ctx->
state[2] = UINT64_C(0x3C6EF372FE94F82B);
229 ctx->
state[3] = UINT64_C(0xA54FF53A5F1D36F1);
230 ctx->
state[4] = UINT64_C(0x510E527FADE682D1);
231 ctx->
state[5] = UINT64_C(0x9B05688C2B3E6C1F);
232 ctx->
state[6] = UINT64_C(0x1F83D9ABFB41BD6B);
233 ctx->
state[7] = UINT64_C(0x5BE0CD19137E2179);
242 #if FF_API_CRYPTO_SIZE_T 250 j = ctx->
count & 127;
253 for (i = 0; i <
len; i++) {
254 ctx->
buffer[j++] = data[i];
261 if ((j + len) > 127) {
262 memcpy(&ctx->
buffer[j], data, (i = 128 - j));
264 for (; i + 127 <
len; i += 128)
269 memcpy(&ctx->
buffer[j], &data[i], len - i);
279 while ((ctx->
count & 127) != 112)
uint8_t buffer[128]
1024-bit buffer of input values used in hash updating
Memory handling functions.
static const uint64_t K512[80]
Convenience header that includes libavutil's core.
static void sha512_transform(uint64_t *state, const uint8_t buffer[128])
uint64_t state[8]
current hash value
Macro definitions for various function/variable attributes.
struct AVSHA512 * av_sha512_alloc(void)
Allocate an AVSHA512 context.
uint8_t digest_len
digest length in 64-bit words
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
uint64_t count
number of bytes in buffer
void av_sha512_update(AVSHA512 *ctx, const uint8_t *data, unsigned int len)
Update hash value.
av_cold int av_sha512_init(AVSHA512 *ctx, int bits)
Initialize SHA-2 512 hashing.
Public header for SHA-512 implementation.
void av_sha512_final(AVSHA512 *ctx, uint8_t *digest)
Finish hashing and output digest value.