FFmpeg  4.0
vf_paletteuse.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2015 Stupeflix
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 /**
22  * @file
23  * Use a palette to downsample an input video stream.
24  */
25 
26 #include "libavutil/bprint.h"
27 #include "libavutil/internal.h"
28 #include "libavutil/opt.h"
29 #include "libavutil/qsort.h"
30 #include "avfilter.h"
31 #include "filters.h"
32 #include "framesync.h"
33 #include "internal.h"
34 
43 };
44 
50 };
51 
52 enum diff_mode {
56 };
57 
58 struct color_node {
61  int split;
63 };
64 
65 #define NBITS 5
66 #define CACHE_SIZE (1<<(3*NBITS))
67 
68 struct cached_color {
69  uint32_t color;
71 };
72 
73 struct cache_node {
76 };
77 
78 struct PaletteUseContext;
79 
81  int x_start, int y_start, int width, int height);
82 
83 typedef struct PaletteUseContext {
84  const AVClass *class;
86  struct cache_node cache[CACHE_SIZE]; /* lookup cache */
87  struct color_node map[AVPALETTE_COUNT]; /* 3D-Tree (KD-Tree with K=3) for reverse colormap */
88  uint32_t palette[AVPALETTE_COUNT];
89  int transparency_index; /* index in the palette of transparency. -1 if there is no transparency in the palette. */
92  int dither;
93  int new;
96  int ordered_dither[8*8];
97  int diff_mode;
100 
101  /* debug options */
105  uint64_t total_mean_err;
108 
109 #define OFFSET(x) offsetof(PaletteUseContext, x)
110 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
111 static const AVOption paletteuse_options[] = {
112  { "dither", "select dithering mode", OFFSET(dither), AV_OPT_TYPE_INT, {.i64=DITHERING_SIERRA2_4A}, 0, NB_DITHERING-1, FLAGS, "dithering_mode" },
113  { "bayer", "ordered 8x8 bayer dithering (deterministic)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_BAYER}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
114  { "heckbert", "dithering as defined by Paul Heckbert in 1982 (simple error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_HECKBERT}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
115  { "floyd_steinberg", "Floyd and Steingberg dithering (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_FLOYD_STEINBERG}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
116  { "sierra2", "Frankie Sierra dithering v2 (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_SIERRA2}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
117  { "sierra2_4a", "Frankie Sierra dithering v2 \"Lite\" (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_SIERRA2_4A}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
118  { "bayer_scale", "set scale for bayer dithering", OFFSET(bayer_scale), AV_OPT_TYPE_INT, {.i64=2}, 0, 5, FLAGS },
119  { "diff_mode", "set frame difference mode", OFFSET(diff_mode), AV_OPT_TYPE_INT, {.i64=DIFF_MODE_NONE}, 0, NB_DIFF_MODE-1, FLAGS, "diff_mode" },
120  { "rectangle", "process smallest different rectangle", 0, AV_OPT_TYPE_CONST, {.i64=DIFF_MODE_RECTANGLE}, INT_MIN, INT_MAX, FLAGS, "diff_mode" },
121  { "new", "take new palette for each output frame", OFFSET(new), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
122  { "alpha_threshold", "set the alpha threshold for transparency", OFFSET(trans_thresh), AV_OPT_TYPE_INT, {.i64=128}, 0, 255 },
123 
124  /* following are the debug options, not part of the official API */
125  { "debug_kdtree", "save Graphviz graph of the kdtree in specified file", OFFSET(dot_filename), AV_OPT_TYPE_STRING, {.str=NULL}, CHAR_MIN, CHAR_MAX, FLAGS },
126  { "color_search", "set reverse colormap color search method", OFFSET(color_search_method), AV_OPT_TYPE_INT, {.i64=COLOR_SEARCH_NNS_ITERATIVE}, 0, NB_COLOR_SEARCHES-1, FLAGS, "search" },
127  { "nns_iterative", "iterative search", 0, AV_OPT_TYPE_CONST, {.i64=COLOR_SEARCH_NNS_ITERATIVE}, INT_MIN, INT_MAX, FLAGS, "search" },
128  { "nns_recursive", "recursive search", 0, AV_OPT_TYPE_CONST, {.i64=COLOR_SEARCH_NNS_RECURSIVE}, INT_MIN, INT_MAX, FLAGS, "search" },
129  { "bruteforce", "brute-force into the palette", 0, AV_OPT_TYPE_CONST, {.i64=COLOR_SEARCH_BRUTEFORCE}, INT_MIN, INT_MAX, FLAGS, "search" },
130  { "mean_err", "compute and print mean error", OFFSET(calc_mean_err), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
131  { "debug_accuracy", "test color search accuracy", OFFSET(debug_accuracy), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
132  { NULL }
133 };
134 
135 AVFILTER_DEFINE_CLASS(paletteuse);
136 
137 static int load_apply_palette(FFFrameSync *fs);
138 
140 {
141  static const enum AVPixelFormat in_fmts[] = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE};
142  static const enum AVPixelFormat inpal_fmts[] = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE};
143  static const enum AVPixelFormat out_fmts[] = {AV_PIX_FMT_PAL8, AV_PIX_FMT_NONE};
144  int ret;
146  AVFilterFormats *inpal = ff_make_format_list(inpal_fmts);
148  if (!in || !inpal || !out) {
149  av_freep(&in);
150  av_freep(&inpal);
151  av_freep(&out);
152  return AVERROR(ENOMEM);
153  }
154  if ((ret = ff_formats_ref(in , &ctx->inputs[0]->out_formats)) < 0 ||
155  (ret = ff_formats_ref(inpal, &ctx->inputs[1]->out_formats)) < 0 ||
156  (ret = ff_formats_ref(out , &ctx->outputs[0]->in_formats)) < 0)
157  return ret;
158  return 0;
159 }
160 
161 static av_always_inline int dither_color(uint32_t px, int er, int eg, int eb, int scale, int shift)
162 {
163  return av_clip_uint8( px >> 24 ) << 24
164  | av_clip_uint8((px >> 16 & 0xff) + ((er * scale) / (1<<shift))) << 16
165  | av_clip_uint8((px >> 8 & 0xff) + ((eg * scale) / (1<<shift))) << 8
166  | av_clip_uint8((px & 0xff) + ((eb * scale) / (1<<shift)));
167 }
168 
169 static av_always_inline int diff(const uint8_t *c1, const uint8_t *c2, const int trans_thresh)
170 {
171  // XXX: try L*a*b with CIE76 (dL*dL + da*da + db*db)
172  const int dr = c1[1] - c2[1];
173  const int dg = c1[2] - c2[2];
174  const int db = c1[3] - c2[3];
175 
176  if (c1[0] < trans_thresh && c2[0] < trans_thresh) {
177  return 0;
178  } else if (c1[0] >= trans_thresh && c2[0] >= trans_thresh) {
179  return dr*dr + dg*dg + db*db;
180  } else {
181  return 255*255 + 255*255 + 255*255;
182  }
183 }
184 
185 static av_always_inline uint8_t colormap_nearest_bruteforce(const uint32_t *palette, const uint8_t *argb, const int trans_thresh)
186 {
187  int i, pal_id = -1, min_dist = INT_MAX;
188 
189  for (i = 0; i < AVPALETTE_COUNT; i++) {
190  const uint32_t c = palette[i];
191 
192  if (c >> 24 >= trans_thresh) { // ignore transparent entry
193  const uint8_t palargb[] = {
194  palette[i]>>24 & 0xff,
195  palette[i]>>16 & 0xff,
196  palette[i]>> 8 & 0xff,
197  palette[i] & 0xff,
198  };
199  const int d = diff(palargb, argb, trans_thresh);
200  if (d < min_dist) {
201  pal_id = i;
202  min_dist = d;
203  }
204  }
205  }
206  return pal_id;
207 }
208 
209 /* Recursive form, simpler but a bit slower. Kept for reference. */
211  int node_pos;
212  int dist_sqd;
213 };
214 
215 static void colormap_nearest_node(const struct color_node *map,
216  const int node_pos,
217  const uint8_t *target,
218  const int trans_thresh,
219  struct nearest_color *nearest)
220 {
221  const struct color_node *kd = map + node_pos;
222  const int s = kd->split;
223  int dx, nearer_kd_id, further_kd_id;
224  const uint8_t *current = kd->val;
225  const int current_to_target = diff(target, current, trans_thresh);
226 
227  if (current_to_target < nearest->dist_sqd) {
228  nearest->node_pos = node_pos;
229  nearest->dist_sqd = current_to_target;
230  }
231 
232  if (kd->left_id != -1 || kd->right_id != -1) {
233  dx = target[s] - current[s];
234 
235  if (dx <= 0) nearer_kd_id = kd->left_id, further_kd_id = kd->right_id;
236  else nearer_kd_id = kd->right_id, further_kd_id = kd->left_id;
237 
238  if (nearer_kd_id != -1)
239  colormap_nearest_node(map, nearer_kd_id, target, trans_thresh, nearest);
240 
241  if (further_kd_id != -1 && dx*dx < nearest->dist_sqd)
242  colormap_nearest_node(map, further_kd_id, target, trans_thresh, nearest);
243  }
244 }
245 
246 static av_always_inline uint8_t colormap_nearest_recursive(const struct color_node *node, const uint8_t *rgb, const int trans_thresh)
247 {
248  struct nearest_color res = {.dist_sqd = INT_MAX, .node_pos = -1};
249  colormap_nearest_node(node, 0, rgb, trans_thresh, &res);
250  return node[res.node_pos].palette_id;
251 }
252 
253 struct stack_node {
254  int color_id;
255  int dx2;
256 };
257 
258 static av_always_inline uint8_t colormap_nearest_iterative(const struct color_node *root, const uint8_t *target, const int trans_thresh)
259 {
260  int pos = 0, best_node_id = -1, best_dist = INT_MAX, cur_color_id = 0;
261  struct stack_node nodes[16];
262  struct stack_node *node = &nodes[0];
263 
264  for (;;) {
265 
266  const struct color_node *kd = &root[cur_color_id];
267  const uint8_t *current = kd->val;
268  const int current_to_target = diff(target, current, trans_thresh);
269 
270  /* Compare current color node to the target and update our best node if
271  * it's actually better. */
272  if (current_to_target < best_dist) {
273  best_node_id = cur_color_id;
274  if (!current_to_target)
275  goto end; // exact match, we can return immediately
276  best_dist = current_to_target;
277  }
278 
279  /* Check if it's not a leaf */
280  if (kd->left_id != -1 || kd->right_id != -1) {
281  const int split = kd->split;
282  const int dx = target[split] - current[split];
283  int nearer_kd_id, further_kd_id;
284 
285  /* Define which side is the most interesting. */
286  if (dx <= 0) nearer_kd_id = kd->left_id, further_kd_id = kd->right_id;
287  else nearer_kd_id = kd->right_id, further_kd_id = kd->left_id;
288 
289  if (nearer_kd_id != -1) {
290  if (further_kd_id != -1) {
291  /* Here, both paths are defined, so we push a state for
292  * when we are going back. */
293  node->color_id = further_kd_id;
294  node->dx2 = dx*dx;
295  pos++;
296  node++;
297  }
298  /* We can now update current color with the most probable path
299  * (no need to create a state since there is nothing to save
300  * anymore). */
301  cur_color_id = nearer_kd_id;
302  continue;
303  } else if (dx*dx < best_dist) {
304  /* The nearest path isn't available, so there is only one path
305  * possible and it's the least probable. We enter it only if the
306  * distance from the current point to the hyper rectangle is
307  * less than our best distance. */
308  cur_color_id = further_kd_id;
309  continue;
310  }
311  }
312 
313  /* Unstack as much as we can, typically as long as the least probable
314  * branch aren't actually probable. */
315  do {
316  if (--pos < 0)
317  goto end;
318  node--;
319  } while (node->dx2 >= best_dist);
320 
321  /* We got a node where the least probable branch might actually contain
322  * a relevant color. */
323  cur_color_id = node->color_id;
324  }
325 
326 end:
327  return root[best_node_id].palette_id;
328 }
329 
330 #define COLORMAP_NEAREST(search, palette, root, target, trans_thresh) \
331  search == COLOR_SEARCH_NNS_ITERATIVE ? colormap_nearest_iterative(root, target, trans_thresh) : \
332  search == COLOR_SEARCH_NNS_RECURSIVE ? colormap_nearest_recursive(root, target, trans_thresh) : \
333  colormap_nearest_bruteforce(palette, target, trans_thresh)
334 
335 /**
336  * Check if the requested color is in the cache already. If not, find it in the
337  * color tree and cache it.
338  * Note: a, r, g, and b are the components of color, but are passed as well to avoid
339  * recomputing them (they are generally computed by the caller for other uses).
340  */
343  const enum color_search_method search_method)
344 {
345  int i;
346  const uint8_t argb_elts[] = {a, r, g, b};
347  const uint8_t rhash = r & ((1<<NBITS)-1);
348  const uint8_t ghash = g & ((1<<NBITS)-1);
349  const uint8_t bhash = b & ((1<<NBITS)-1);
350  const unsigned hash = rhash<<(NBITS*2) | ghash<<NBITS | bhash;
351  struct cache_node *node = &s->cache[hash];
352  struct cached_color *e;
353 
354  // first, check for transparency
355  if (a < s->trans_thresh && s->transparency_index >= 0) {
356  return s->transparency_index;
357  }
358 
359  for (i = 0; i < node->nb_entries; i++) {
360  e = &node->entries[i];
361  if (e->color == color)
362  return e->pal_entry;
363  }
364 
365  e = av_dynarray2_add((void**)&node->entries, &node->nb_entries,
366  sizeof(*node->entries), NULL);
367  if (!e)
368  return AVERROR(ENOMEM);
369  e->color = color;
370  e->pal_entry = COLORMAP_NEAREST(search_method, s->palette, s->map, argb_elts, s->trans_thresh);
371 
372  return e->pal_entry;
373 }
374 
376  uint32_t c, int *er, int *eg, int *eb,
377  const enum color_search_method search_method)
378 {
379  const uint8_t a = c >> 24 & 0xff;
380  const uint8_t r = c >> 16 & 0xff;
381  const uint8_t g = c >> 8 & 0xff;
382  const uint8_t b = c & 0xff;
383  uint32_t dstc;
384  const int dstx = color_get(s, c, a, r, g, b, search_method);
385  if (dstx < 0)
386  return dstx;
387  dstc = s->palette[dstx];
388  *er = r - (dstc >> 16 & 0xff);
389  *eg = g - (dstc >> 8 & 0xff);
390  *eb = b - (dstc & 0xff);
391  return dstx;
392 }
393 
395  int x_start, int y_start, int w, int h,
396  enum dithering_mode dither,
397  const enum color_search_method search_method)
398 {
399  int x, y;
400  const int src_linesize = in ->linesize[0] >> 2;
401  const int dst_linesize = out->linesize[0];
402  uint32_t *src = ((uint32_t *)in ->data[0]) + y_start*src_linesize;
403  uint8_t *dst = out->data[0] + y_start*dst_linesize;
404 
405  w += x_start;
406  h += y_start;
407 
408  for (y = y_start; y < h; y++) {
409  for (x = x_start; x < w; x++) {
410  int er, eg, eb;
411 
412  if (dither == DITHERING_BAYER) {
413  const int d = s->ordered_dither[(y & 7)<<3 | (x & 7)];
414  const uint8_t a8 = src[x] >> 24 & 0xff;
415  const uint8_t r8 = src[x] >> 16 & 0xff;
416  const uint8_t g8 = src[x] >> 8 & 0xff;
417  const uint8_t b8 = src[x] & 0xff;
418  const uint8_t r = av_clip_uint8(r8 + d);
419  const uint8_t g = av_clip_uint8(g8 + d);
420  const uint8_t b = av_clip_uint8(b8 + d);
421  const int color = color_get(s, src[x], a8, r, g, b, search_method);
422 
423  if (color < 0)
424  return color;
425  dst[x] = color;
426 
427  } else if (dither == DITHERING_HECKBERT) {
428  const int right = x < w - 1, down = y < h - 1;
429  const int color = get_dst_color_err(s, src[x], &er, &eg, &eb, search_method);
430 
431  if (color < 0)
432  return color;
433  dst[x] = color;
434 
435  if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 3, 3);
436  if ( down) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 3, 3);
437  if (right && down) src[src_linesize + x + 1] = dither_color(src[src_linesize + x + 1], er, eg, eb, 2, 3);
438 
439  } else if (dither == DITHERING_FLOYD_STEINBERG) {
440  const int right = x < w - 1, down = y < h - 1, left = x > x_start;
441  const int color = get_dst_color_err(s, src[x], &er, &eg, &eb, search_method);
442 
443  if (color < 0)
444  return color;
445  dst[x] = color;
446 
447  if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 7, 4);
448  if (left && down) src[src_linesize + x - 1] = dither_color(src[src_linesize + x - 1], er, eg, eb, 3, 4);
449  if ( down) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 5, 4);
450  if (right && down) src[src_linesize + x + 1] = dither_color(src[src_linesize + x + 1], er, eg, eb, 1, 4);
451 
452  } else if (dither == DITHERING_SIERRA2) {
453  const int right = x < w - 1, down = y < h - 1, left = x > x_start;
454  const int right2 = x < w - 2, left2 = x > x_start + 1;
455  const int color = get_dst_color_err(s, src[x], &er, &eg, &eb, search_method);
456 
457  if (color < 0)
458  return color;
459  dst[x] = color;
460 
461  if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 4, 4);
462  if (right2) src[ x + 2] = dither_color(src[ x + 2], er, eg, eb, 3, 4);
463 
464  if (down) {
465  if (left2) src[ src_linesize + x - 2] = dither_color(src[ src_linesize + x - 2], er, eg, eb, 1, 4);
466  if (left) src[ src_linesize + x - 1] = dither_color(src[ src_linesize + x - 1], er, eg, eb, 2, 4);
467  if (1) src[ src_linesize + x ] = dither_color(src[ src_linesize + x ], er, eg, eb, 3, 4);
468  if (right) src[ src_linesize + x + 1] = dither_color(src[ src_linesize + x + 1], er, eg, eb, 2, 4);
469  if (right2) src[ src_linesize + x + 2] = dither_color(src[ src_linesize + x + 2], er, eg, eb, 1, 4);
470  }
471 
472  } else if (dither == DITHERING_SIERRA2_4A) {
473  const int right = x < w - 1, down = y < h - 1, left = x > x_start;
474  const int color = get_dst_color_err(s, src[x], &er, &eg, &eb, search_method);
475 
476  if (color < 0)
477  return color;
478  dst[x] = color;
479 
480  if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 2, 2);
481  if (left && down) src[src_linesize + x - 1] = dither_color(src[src_linesize + x - 1], er, eg, eb, 1, 2);
482  if ( down) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 1, 2);
483 
484  } else {
485  const uint8_t a = src[x] >> 24 & 0xff;
486  const uint8_t r = src[x] >> 16 & 0xff;
487  const uint8_t g = src[x] >> 8 & 0xff;
488  const uint8_t b = src[x] & 0xff;
489  const int color = color_get(s, src[x], a, r, g, b, search_method);
490 
491  if (color < 0)
492  return color;
493  dst[x] = color;
494  }
495  }
496  src += src_linesize;
497  dst += dst_linesize;
498  }
499  return 0;
500 }
501 
502 #define INDENT 4
503 static void disp_node(AVBPrint *buf,
504  const struct color_node *map,
505  int parent_id, int node_id,
506  int depth)
507 {
508  const struct color_node *node = &map[node_id];
509  const uint32_t fontcolor = node->val[1] > 0x50 &&
510  node->val[2] > 0x50 &&
511  node->val[3] > 0x50 ? 0 : 0xffffff;
512  const int rgb_comp = node->split - 1;
513  av_bprintf(buf, "%*cnode%d ["
514  "label=\"%c%02X%c%02X%c%02X%c\" "
515  "fillcolor=\"#%02x%02x%02x\" "
516  "fontcolor=\"#%06"PRIX32"\"]\n",
517  depth*INDENT, ' ', node->palette_id,
518  "[ "[rgb_comp], node->val[1],
519  "][ "[rgb_comp], node->val[2],
520  " ]["[rgb_comp], node->val[3],
521  " ]"[rgb_comp],
522  node->val[1], node->val[2], node->val[3],
523  fontcolor);
524  if (parent_id != -1)
525  av_bprintf(buf, "%*cnode%d -> node%d\n", depth*INDENT, ' ',
526  map[parent_id].palette_id, node->palette_id);
527  if (node->left_id != -1) disp_node(buf, map, node_id, node->left_id, depth + 1);
528  if (node->right_id != -1) disp_node(buf, map, node_id, node->right_id, depth + 1);
529 }
530 
531 // debug_kdtree=kdtree.dot -> dot -Tpng kdtree.dot > kdtree.png
532 static int disp_tree(const struct color_node *node, const char *fname)
533 {
534  AVBPrint buf;
535  FILE *f = av_fopen_utf8(fname, "w");
536 
537  if (!f) {
538  int ret = AVERROR(errno);
539  av_log(NULL, AV_LOG_ERROR, "Cannot open file '%s' for writing: %s\n",
540  fname, av_err2str(ret));
541  return ret;
542  }
543 
545 
546  av_bprintf(&buf, "digraph {\n");
547  av_bprintf(&buf, " node [style=filled fontsize=10 shape=box]\n");
548  disp_node(&buf, node, -1, 0, 0);
549  av_bprintf(&buf, "}\n");
550 
551  fwrite(buf.str, 1, buf.len, f);
552  fclose(f);
553  av_bprint_finalize(&buf, NULL);
554  return 0;
555 }
556 
557 static int debug_accuracy(const struct color_node *node, const uint32_t *palette, const int trans_thresh,
558  const enum color_search_method search_method)
559 {
560  int r, g, b, ret = 0;
561 
562  for (r = 0; r < 256; r++) {
563  for (g = 0; g < 256; g++) {
564  for (b = 0; b < 256; b++) {
565  const uint8_t argb[] = {0xff, r, g, b};
566  const int r1 = COLORMAP_NEAREST(search_method, palette, node, argb, trans_thresh);
567  const int r2 = colormap_nearest_bruteforce(palette, argb, trans_thresh);
568  if (r1 != r2) {
569  const uint32_t c1 = palette[r1];
570  const uint32_t c2 = palette[r2];
571  const uint8_t palargb1[] = { 0xff, c1>>16 & 0xff, c1>> 8 & 0xff, c1 & 0xff };
572  const uint8_t palargb2[] = { 0xff, c2>>16 & 0xff, c2>> 8 & 0xff, c2 & 0xff };
573  const int d1 = diff(palargb1, argb, trans_thresh);
574  const int d2 = diff(palargb2, argb, trans_thresh);
575  if (d1 != d2) {
577  "/!\\ %02X%02X%02X: %d ! %d (%06"PRIX32" ! %06"PRIX32") / dist: %d ! %d\n",
578  r, g, b, r1, r2, c1 & 0xffffff, c2 & 0xffffff, d1, d2);
579  ret = 1;
580  }
581  }
582  }
583  }
584  }
585  return ret;
586 }
587 
588 struct color {
589  uint32_t value;
591 };
592 
593 struct color_rect {
595  uint8_t max[3];
596 };
597 
598 typedef int (*cmp_func)(const void *, const void *);
599 
600 #define DECLARE_CMP_FUNC(name, pos) \
601 static int cmp_##name(const void *pa, const void *pb) \
602 { \
603  const struct color *a = pa; \
604  const struct color *b = pb; \
605  return (a->value >> (8 * (3 - (pos))) & 0xff) \
606  - (b->value >> (8 * (3 - (pos))) & 0xff); \
607 }
608 
613 
614 static const cmp_func cmp_funcs[] = {cmp_a, cmp_r, cmp_g, cmp_b};
615 
616 static int get_next_color(const uint8_t *color_used, const uint32_t *palette,
617  const int trans_thresh,
618  int *component, const struct color_rect *box)
619 {
620  int wr, wg, wb;
621  int i, longest = 0;
622  unsigned nb_color = 0;
623  struct color_rect ranges;
624  struct color tmp_pal[256];
625  cmp_func cmpf;
626 
627  ranges.min[0] = ranges.min[1] = ranges.min[2] = 0xff;
628  ranges.max[0] = ranges.max[1] = ranges.max[2] = 0x00;
629 
630  for (i = 0; i < AVPALETTE_COUNT; i++) {
631  const uint32_t c = palette[i];
632  const uint8_t a = c >> 24 & 0xff;
633  const uint8_t r = c >> 16 & 0xff;
634  const uint8_t g = c >> 8 & 0xff;
635  const uint8_t b = c & 0xff;
636 
637  if (a < trans_thresh) {
638  continue;
639  }
640 
641  if (color_used[i] || (a != 0xff) ||
642  r < box->min[0] || g < box->min[1] || b < box->min[2] ||
643  r > box->max[0] || g > box->max[1] || b > box->max[2])
644  continue;
645 
646  if (r < ranges.min[0]) ranges.min[0] = r;
647  if (g < ranges.min[1]) ranges.min[1] = g;
648  if (b < ranges.min[2]) ranges.min[2] = b;
649 
650  if (r > ranges.max[0]) ranges.max[0] = r;
651  if (g > ranges.max[1]) ranges.max[1] = g;
652  if (b > ranges.max[2]) ranges.max[2] = b;
653 
654  tmp_pal[nb_color].value = c;
655  tmp_pal[nb_color].pal_id = i;
656 
657  nb_color++;
658  }
659 
660  if (!nb_color)
661  return -1;
662 
663  /* define longest axis that will be the split component */
664  wr = ranges.max[0] - ranges.min[0];
665  wg = ranges.max[1] - ranges.min[1];
666  wb = ranges.max[2] - ranges.min[2];
667  if (wr >= wg && wr >= wb) longest = 1;
668  if (wg >= wr && wg >= wb) longest = 2;
669  if (wb >= wr && wb >= wg) longest = 3;
670  cmpf = cmp_funcs[longest];
671  *component = longest;
672 
673  /* sort along this axis to get median */
674  AV_QSORT(tmp_pal, nb_color, struct color, cmpf);
675 
676  return tmp_pal[nb_color >> 1].pal_id;
677 }
678 
679 static int colormap_insert(struct color_node *map,
680  uint8_t *color_used,
681  int *nb_used,
682  const uint32_t *palette,
683  const int trans_thresh,
684  const struct color_rect *box)
685 {
686  uint32_t c;
687  int component, cur_id;
688  int node_left_id = -1, node_right_id = -1;
689  struct color_node *node;
690  struct color_rect box1, box2;
691  const int pal_id = get_next_color(color_used, palette, trans_thresh, &component, box);
692 
693  if (pal_id < 0)
694  return -1;
695 
696  /* create new node with that color */
697  cur_id = (*nb_used)++;
698  c = palette[pal_id];
699  node = &map[cur_id];
700  node->split = component;
701  node->palette_id = pal_id;
702  node->val[0] = c>>24 & 0xff;
703  node->val[1] = c>>16 & 0xff;
704  node->val[2] = c>> 8 & 0xff;
705  node->val[3] = c & 0xff;
706 
707  color_used[pal_id] = 1;
708 
709  /* get the two boxes this node creates */
710  box1 = box2 = *box;
711  box1.max[component-1] = node->val[component];
712  box2.min[component-1] = node->val[component] + 1;
713 
714  node_left_id = colormap_insert(map, color_used, nb_used, palette, trans_thresh, &box1);
715 
716  if (box2.min[component-1] <= box2.max[component-1])
717  node_right_id = colormap_insert(map, color_used, nb_used, palette, trans_thresh, &box2);
718 
719  node->left_id = node_left_id;
720  node->right_id = node_right_id;
721 
722  return cur_id;
723 }
724 
725 static int cmp_pal_entry(const void *a, const void *b)
726 {
727  const int c1 = *(const uint32_t *)a & 0xffffff;
728  const int c2 = *(const uint32_t *)b & 0xffffff;
729  return c1 - c2;
730 }
731 
733 {
734  int i, nb_used = 0;
735  uint8_t color_used[AVPALETTE_COUNT] = {0};
736  uint32_t last_color = 0;
737  struct color_rect box;
738 
739  /* disable transparent colors and dups */
740  qsort(s->palette, AVPALETTE_COUNT, sizeof(*s->palette), cmp_pal_entry);
741  // update transparency index:
742  if (s->transparency_index >= 0) {
743  for (i = 0; i < AVPALETTE_COUNT; i++) {
744  if ((s->palette[i]>>24 & 0xff) == 0) {
745  s->transparency_index = i; // we are assuming at most one transparent color in palette
746  break;
747  }
748  }
749  }
750 
751  for (i = 0; i < AVPALETTE_COUNT; i++) {
752  const uint32_t c = s->palette[i];
753  if (i != 0 && c == last_color) {
754  color_used[i] = 1;
755  continue;
756  }
757  last_color = c;
758  if (c >> 24 < s->trans_thresh) {
759  color_used[i] = 1; // ignore transparent color(s)
760  continue;
761  }
762  }
763 
764  box.min[0] = box.min[1] = box.min[2] = 0x00;
765  box.max[0] = box.max[1] = box.max[2] = 0xff;
766 
767  colormap_insert(s->map, color_used, &nb_used, s->palette, s->trans_thresh, &box);
768 
769  if (s->dot_filename)
770  disp_tree(s->map, s->dot_filename);
771 
772  if (s->debug_accuracy) {
774  av_log(NULL, AV_LOG_INFO, "Accuracy check passed\n");
775  }
776 }
777 
778 static void debug_mean_error(PaletteUseContext *s, const AVFrame *in1,
779  const AVFrame *in2, int frame_count)
780 {
781  int x, y;
782  const uint32_t *palette = s->palette;
783  uint32_t *src1 = (uint32_t *)in1->data[0];
784  uint8_t *src2 = in2->data[0];
785  const int src1_linesize = in1->linesize[0] >> 2;
786  const int src2_linesize = in2->linesize[0];
787  const float div = in1->width * in1->height * 3;
788  unsigned mean_err = 0;
789 
790  for (y = 0; y < in1->height; y++) {
791  for (x = 0; x < in1->width; x++) {
792  const uint32_t c1 = src1[x];
793  const uint32_t c2 = palette[src2[x]];
794  const uint8_t argb1[] = {0xff, c1 >> 16 & 0xff, c1 >> 8 & 0xff, c1 & 0xff};
795  const uint8_t argb2[] = {0xff, c2 >> 16 & 0xff, c2 >> 8 & 0xff, c2 & 0xff};
796  mean_err += diff(argb1, argb2, s->trans_thresh);
797  }
798  src1 += src1_linesize;
799  src2 += src2_linesize;
800  }
801 
802  s->total_mean_err += mean_err;
803 
804  av_log(NULL, AV_LOG_INFO, "MEP:%.3f TotalMEP:%.3f\n",
805  mean_err / div, s->total_mean_err / (div * frame_count));
806 }
807 
809  const AVFrame *prv_src, const AVFrame *cur_src,
810  const AVFrame *prv_dst, AVFrame *cur_dst,
811  int *xp, int *yp, int *wp, int *hp)
812 {
813  int x_start = 0, y_start = 0;
814  int width = cur_src->width;
815  int height = cur_src->height;
816 
817  if (prv_src && diff_mode == DIFF_MODE_RECTANGLE) {
818  int y;
819  int x_end = cur_src->width - 1,
820  y_end = cur_src->height - 1;
821  const uint32_t *prv_srcp = (const uint32_t *)prv_src->data[0];
822  const uint32_t *cur_srcp = (const uint32_t *)cur_src->data[0];
823  const uint8_t *prv_dstp = prv_dst->data[0];
824  uint8_t *cur_dstp = cur_dst->data[0];
825 
826  const int prv_src_linesize = prv_src->linesize[0] >> 2;
827  const int cur_src_linesize = cur_src->linesize[0] >> 2;
828  const int prv_dst_linesize = prv_dst->linesize[0];
829  const int cur_dst_linesize = cur_dst->linesize[0];
830 
831  /* skip common lines */
832  while (y_start < y_end && !memcmp(prv_srcp + y_start*prv_src_linesize,
833  cur_srcp + y_start*cur_src_linesize,
834  cur_src->width * 4)) {
835  memcpy(cur_dstp + y_start*cur_dst_linesize,
836  prv_dstp + y_start*prv_dst_linesize,
837  cur_dst->width);
838  y_start++;
839  }
840  while (y_end > y_start && !memcmp(prv_srcp + y_end*prv_src_linesize,
841  cur_srcp + y_end*cur_src_linesize,
842  cur_src->width * 4)) {
843  memcpy(cur_dstp + y_end*cur_dst_linesize,
844  prv_dstp + y_end*prv_dst_linesize,
845  cur_dst->width);
846  y_end--;
847  }
848 
849  height = y_end + 1 - y_start;
850 
851  /* skip common columns */
852  while (x_start < x_end) {
853  int same_column = 1;
854  for (y = y_start; y <= y_end; y++) {
855  if (prv_srcp[y*prv_src_linesize + x_start] != cur_srcp[y*cur_src_linesize + x_start]) {
856  same_column = 0;
857  break;
858  }
859  }
860  if (!same_column)
861  break;
862  x_start++;
863  }
864  while (x_end > x_start) {
865  int same_column = 1;
866  for (y = y_start; y <= y_end; y++) {
867  if (prv_srcp[y*prv_src_linesize + x_end] != cur_srcp[y*cur_src_linesize + x_end]) {
868  same_column = 0;
869  break;
870  }
871  }
872  if (!same_column)
873  break;
874  x_end--;
875  }
876  width = x_end + 1 - x_start;
877 
878  if (x_start) {
879  for (y = y_start; y <= y_end; y++)
880  memcpy(cur_dstp + y*cur_dst_linesize,
881  prv_dstp + y*prv_dst_linesize, x_start);
882  }
883  if (x_end != cur_src->width - 1) {
884  const int copy_len = cur_src->width - 1 - x_end;
885  for (y = y_start; y <= y_end; y++)
886  memcpy(cur_dstp + y*cur_dst_linesize + x_end + 1,
887  prv_dstp + y*prv_dst_linesize + x_end + 1,
888  copy_len);
889  }
890  }
891  *xp = x_start;
892  *yp = y_start;
893  *wp = width;
894  *hp = height;
895 }
896 
897 static int apply_palette(AVFilterLink *inlink, AVFrame *in, AVFrame **outf)
898 {
899  int x, y, w, h, ret;
900  AVFilterContext *ctx = inlink->dst;
901  PaletteUseContext *s = ctx->priv;
902  AVFilterLink *outlink = inlink->dst->outputs[0];
903 
904  AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
905  if (!out) {
906  av_frame_free(&in);
907  *outf = NULL;
908  return AVERROR(ENOMEM);
909  }
910  av_frame_copy_props(out, in);
911 
913  s->last_out, out, &x, &y, &w, &h);
914  av_frame_free(&s->last_in);
915  av_frame_free(&s->last_out);
916  s->last_in = av_frame_clone(in);
917  s->last_out = av_frame_clone(out);
918  if (!s->last_in || !s->last_out ||
920  av_frame_free(&in);
921  av_frame_free(&out);
922  *outf = NULL;
923  return AVERROR(ENOMEM);
924  }
925 
926  ff_dlog(ctx, "%dx%d rect: (%d;%d) -> (%d,%d) [area:%dx%d]\n",
927  w, h, x, y, x+w, y+h, in->width, in->height);
928 
929  ret = s->set_frame(s, out, in, x, y, w, h);
930  if (ret < 0) {
931  av_frame_free(&out);
932  *outf = NULL;
933  return ret;
934  }
935  memcpy(out->data[1], s->palette, AVPALETTE_SIZE);
936  if (s->calc_mean_err)
937  debug_mean_error(s, in, out, inlink->frame_count_out);
938  av_frame_free(&in);
939  *outf = out;
940  return 0;
941 }
942 
943 static int config_output(AVFilterLink *outlink)
944 {
945  int ret;
946  AVFilterContext *ctx = outlink->src;
947  PaletteUseContext *s = ctx->priv;
948 
949  ret = ff_framesync_init_dualinput(&s->fs, ctx);
950  if (ret < 0)
951  return ret;
952  s->fs.opt_repeatlast = 1; // only 1 frame in the palette
953  s->fs.in[1].before = s->fs.in[1].after = EXT_INFINITY;
955 
956  outlink->w = ctx->inputs[0]->w;
957  outlink->h = ctx->inputs[0]->h;
958 
959  outlink->time_base = ctx->inputs[0]->time_base;
960  if ((ret = ff_framesync_configure(&s->fs)) < 0)
961  return ret;
962  return 0;
963 }
964 
966 {
967  AVFilterContext *ctx = inlink->dst;
968 
969  if (inlink->w * inlink->h != AVPALETTE_COUNT) {
970  av_log(ctx, AV_LOG_ERROR,
971  "Palette input must contain exactly %d pixels. "
972  "Specified input has %dx%d=%d pixels\n",
973  AVPALETTE_COUNT, inlink->w, inlink->h,
974  inlink->w * inlink->h);
975  return AVERROR(EINVAL);
976  }
977  return 0;
978 }
979 
980 static void load_palette(PaletteUseContext *s, const AVFrame *palette_frame)
981 {
982  int i, x, y;
983  const uint32_t *p = (const uint32_t *)palette_frame->data[0];
984  const int p_linesize = palette_frame->linesize[0] >> 2;
985 
986  s->transparency_index = -1;
987 
988  if (s->new) {
989  memset(s->palette, 0, sizeof(s->palette));
990  memset(s->map, 0, sizeof(s->map));
991  for (i = 0; i < CACHE_SIZE; i++)
992  av_freep(&s->cache[i].entries);
993  memset(s->cache, 0, sizeof(s->cache));
994  }
995 
996  i = 0;
997  for (y = 0; y < palette_frame->height; y++) {
998  for (x = 0; x < palette_frame->width; x++) {
999  s->palette[i] = p[x];
1000  if (p[x]>>24 < s->trans_thresh) {
1001  s->transparency_index = i; // we are assuming at most one transparent color in palette
1002  }
1003  i++;
1004  }
1005  p += p_linesize;
1006  }
1007 
1008  load_colormap(s);
1009 
1010  if (!s->new)
1011  s->palette_loaded = 1;
1012 }
1013 
1015 {
1016  AVFilterContext *ctx = fs->parent;
1017  AVFilterLink *inlink = ctx->inputs[0];
1018  PaletteUseContext *s = ctx->priv;
1019  AVFrame *master, *second, *out = NULL;
1020  int ret;
1021 
1022  // writable for error diffusal dithering
1023  ret = ff_framesync_dualinput_get_writable(fs, &master, &second);
1024  if (ret < 0)
1025  return ret;
1026  if (!master || !second) {
1027  ret = AVERROR_BUG;
1028  goto error;
1029  }
1030  if (!s->palette_loaded) {
1031  load_palette(s, second);
1032  }
1033  ret = apply_palette(inlink, master, &out);
1034  if (ret < 0)
1035  goto error;
1036  return ff_filter_frame(ctx->outputs[0], out);
1037 
1038 error:
1039  av_frame_free(&master);
1040  return ret;
1041 }
1042 
1043 #define DEFINE_SET_FRAME(color_search, name, value) \
1044 static int set_frame_##name(PaletteUseContext *s, AVFrame *out, AVFrame *in, \
1045  int x_start, int y_start, int w, int h) \
1046 { \
1047  return set_frame(s, out, in, x_start, y_start, w, h, value, color_search); \
1048 }
1049 
1050 #define DEFINE_SET_FRAME_COLOR_SEARCH(color_search, color_search_macro) \
1051  DEFINE_SET_FRAME(color_search_macro, color_search##_##none, DITHERING_NONE) \
1052  DEFINE_SET_FRAME(color_search_macro, color_search##_##bayer, DITHERING_BAYER) \
1053  DEFINE_SET_FRAME(color_search_macro, color_search##_##heckbert, DITHERING_HECKBERT) \
1054  DEFINE_SET_FRAME(color_search_macro, color_search##_##floyd_steinberg, DITHERING_FLOYD_STEINBERG) \
1055  DEFINE_SET_FRAME(color_search_macro, color_search##_##sierra2, DITHERING_SIERRA2) \
1056  DEFINE_SET_FRAME(color_search_macro, color_search##_##sierra2_4a, DITHERING_SIERRA2_4A) \
1057 
1061 
1062 #define DITHERING_ENTRIES(color_search) { \
1063  set_frame_##color_search##_none, \
1064  set_frame_##color_search##_bayer, \
1065  set_frame_##color_search##_heckbert, \
1066  set_frame_##color_search##_floyd_steinberg, \
1067  set_frame_##color_search##_sierra2, \
1068  set_frame_##color_search##_sierra2_4a, \
1069 }
1070 
1072  DITHERING_ENTRIES(nns_iterative),
1073  DITHERING_ENTRIES(nns_recursive),
1074  DITHERING_ENTRIES(bruteforce),
1075 };
1076 
1077 static int dither_value(int p)
1078 {
1079  const int q = p ^ (p >> 3);
1080  return (p & 4) >> 2 | (q & 4) >> 1 \
1081  | (p & 2) << 1 | (q & 2) << 2 \
1082  | (p & 1) << 4 | (q & 1) << 5;
1083 }
1084 
1086 {
1087  PaletteUseContext *s = ctx->priv;
1088 
1089  s->set_frame = set_frame_lut[s->color_search_method][s->dither];
1090 
1091  if (s->dither == DITHERING_BAYER) {
1092  int i;
1093  const int delta = 1 << (5 - s->bayer_scale); // to avoid too much luma
1094 
1095  for (i = 0; i < FF_ARRAY_ELEMS(s->ordered_dither); i++)
1096  s->ordered_dither[i] = (dither_value(i) >> s->bayer_scale) - delta;
1097  }
1098 
1099  return 0;
1100 }
1101 
1103 {
1104  PaletteUseContext *s = ctx->priv;
1105  return ff_framesync_activate(&s->fs);
1106 }
1107 
1109 {
1110  int i;
1111  PaletteUseContext *s = ctx->priv;
1112 
1113  ff_framesync_uninit(&s->fs);
1114  for (i = 0; i < CACHE_SIZE; i++)
1115  av_freep(&s->cache[i].entries);
1116  av_frame_free(&s->last_in);
1117  av_frame_free(&s->last_out);
1118 }
1119 
1120 static const AVFilterPad paletteuse_inputs[] = {
1121  {
1122  .name = "default",
1123  .type = AVMEDIA_TYPE_VIDEO,
1124  },{
1125  .name = "palette",
1126  .type = AVMEDIA_TYPE_VIDEO,
1127  .config_props = config_input_palette,
1128  },
1129  { NULL }
1130 };
1131 
1133  {
1134  .name = "default",
1135  .type = AVMEDIA_TYPE_VIDEO,
1136  .config_props = config_output,
1137  },
1138  { NULL }
1139 };
1140 
1142  .name = "paletteuse",
1143  .description = NULL_IF_CONFIG_SMALL("Use a palette to downsample an input video stream."),
1144  .priv_size = sizeof(PaletteUseContext),
1146  .init = init,
1147  .uninit = uninit,
1148  .activate = activate,
1149  .inputs = paletteuse_inputs,
1150  .outputs = paletteuse_outputs,
1151  .priv_class = &paletteuse_class,
1152 };
diff_mode
Definition: vf_paletteuse.c:52
static av_always_inline int get_dst_color_err(PaletteUseContext *s, uint32_t c, int *er, int *eg, int *eb, const enum color_search_method search_method)
static void colormap_nearest_node(const struct color_node *map, const int node_pos, const uint8_t *target, const int trans_thresh, struct nearest_color *nearest)
uint64_t total_mean_err
AVFILTER_DEFINE_CLASS(paletteuse)
#define NULL
Definition: coverity.c:32
const char * s
Definition: avisynth_c.h:768
void av_bprintf(AVBPrint *buf, const char *fmt,...)
Definition: bprint.c:94
static int shift(int a, int b)
Definition: sonic.c:82
static void load_palette(PaletteUseContext *s, const AVFrame *palette_frame)
This structure describes decoded (raw) audio or video data.
Definition: frame.h:218
static int colormap_insert(struct color_node *map, uint8_t *color_used, int *nb_used, const uint32_t *palette, const int trans_thresh, const struct color_rect *box)
AVOption.
Definition: opt.h:246
color_search_method
Definition: vf_paletteuse.c:45
Main libavfilter public API header.
const char * g
Definition: vf_curves.c:112
dithering_mode
Definition: vf_paletteuse.c:35
static int query_formats(AVFilterContext *ctx)
FILE * av_fopen_utf8(const char *path, const char *mode)
Open a file using a UTF-8 filename.
Definition: file_open.c:158
static av_always_inline uint8_t colormap_nearest_iterative(const struct color_node *root, const uint8_t *target, const int trans_thresh)
const char * b
Definition: vf_curves.c:113
static const AVFilterPad paletteuse_outputs[]
static av_always_inline uint8_t colormap_nearest_recursive(const struct color_node *node, const uint8_t *rgb, const int trans_thresh)
int ff_framesync_configure(FFFrameSync *fs)
Configure a frame sync structure.
Definition: framesync.c:117
static av_always_inline int dither_color(uint32_t px, int er, int eg, int eb, int scale, int shift)
const char * master
Definition: vf_curves.c:114
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
Definition: video.c:99
#define src
Definition: vp8dsp.c:254
uint8_t val[4]
Definition: vf_paletteuse.c:59
static av_cold int init(AVFilterContext *ctx)
int av_bprint_finalize(AVBPrint *buf, char **ret_str)
Finalize a print buffer.
Definition: bprint.c:235
enum FFFrameSyncExtMode before
Extrapolation mode for timestamps before the first frame.
Definition: framesync.h:86
AVFilterFormats * ff_make_format_list(const int *fmts)
Create a list of supported formats.
Definition: formats.c:283
const char * name
Pad name.
Definition: internal.h:60
AVFilterContext * parent
Parent filter context.
Definition: framesync.h:152
AVFilterLink ** inputs
array of pointers to input links
Definition: avfilter.h:346
AVFilter ff_vf_paletteuse
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
Definition: avfilter.c:1080
uint8_t
#define av_cold
Definition: attributes.h:82
float delta
8 bits with AV_PIX_FMT_RGB32 palette
Definition: pixfmt.h:73
AVOptions.
uint8_t pal_id
#define INDENT
static const uint32_t color[16+AV_CLASS_CATEGORY_NB]
Definition: log.c:92
int ff_framesync_init_dualinput(FFFrameSync *fs, AVFilterContext *parent)
Initialize a frame sync structure for dualinput.
Definition: framesync.c:361
#define AVPALETTE_SIZE
Definition: pixfmt.h:32
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
uint32_t color
Definition: vf_paletteuse.c:69
int ff_framesync_dualinput_get_writable(FFFrameSync *fs, AVFrame **f0, AVFrame **f1)
Same as ff_framesync_dualinput_get(), but make sure that f0 is writable.
Definition: framesync.c:399
static const cmp_func cmp_funcs[]
static int config_input_palette(AVFilterLink *inlink)
FFFrameSyncIn * in
Pointer to array of inputs.
Definition: framesync.h:203
const char data[16]
Definition: mxf.c:90
#define height
FFFrameSync fs
Definition: vf_paletteuse.c:85
static const uint64_t c1
Definition: murmur3.c:49
#define ff_dlog(a,...)
int(* set_frame_func)(struct PaletteUseContext *s, AVFrame *out, AVFrame *in, int x_start, int y_start, int width, int height)
Definition: vf_paletteuse.c:80
enum FFFrameSyncExtMode after
Extrapolation mode for timestamps after the last frame.
Definition: framesync.h:91
uint32_t palette[AVPALETTE_COUNT]
Definition: vf_paletteuse.c:88
static const AVOption paletteuse_options[]
#define av_log(a,...)
A filter pad used for either input or output.
Definition: internal.h:54
uint8_t hash[HASH_SIZE]
Definition: movenc.c:57
#define DEFINE_SET_FRAME_COLOR_SEARCH(color_search, color_search_macro)
static int disp_tree(const struct color_node *node, const char *fname)
set_frame_func set_frame
Definition: vf_paletteuse.c:94
static int load_apply_palette(FFFrameSync *fs)
int width
Definition: frame.h:276
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
uint8_t max[3]
#define AV_BPRINT_SIZE_UNLIMITED
void ff_framesync_uninit(FFFrameSync *fs)
Free all memory currently allocated.
Definition: framesync.c:293
Frame sync structure.
Definition: framesync.h:146
#define AVERROR(e)
Definition: error.h:43
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:202
#define COLORMAP_NEAREST(search, palette, root, target, trans_thresh)
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:186
void av_bprint_init(AVBPrint *buf, unsigned size_init, unsigned size_max)
Definition: bprint.c:69
const char * r
Definition: vf_curves.c:111
static const uint8_t dither[8][8]
Definition: vf_fspp.c:57
void * priv
private data for use by the filter
Definition: avfilter.h:353
static const set_frame_func set_frame_lut[NB_COLOR_SEARCHES][NB_DITHERING]
uint16_t width
Definition: gdv.c:47
int ff_framesync_activate(FFFrameSync *fs)
Examine the frames in the filter&#39;s input and try to produce output.
Definition: framesync.c:344
int(* on_event)(struct FFFrameSync *fs)
Callback called when a frame event is ready.
Definition: framesync.h:172
int opt_repeatlast
Definition: framesync.h:205
static int dither_value(int p)
static int debug_accuracy(const struct color_node *node, const uint32_t *palette, const int trans_thresh, const enum color_search_method search_method)
common internal API header
static int get_next_color(const uint8_t *color_used, const uint32_t *palette, const int trans_thresh, int *component, const struct color_rect *box)
static void disp_node(AVBPrint *buf, const struct color_node *map, int parent_id, int node_id, int depth)
int ff_formats_ref(AVFilterFormats *f, AVFilterFormats **ref)
Add *ref as a new reference to formats.
Definition: formats.c:440
static void set_processing_window(enum diff_mode diff_mode, const AVFrame *prv_src, const AVFrame *cur_src, const AVFrame *prv_dst, AVFrame *cur_dst, int *xp, int *yp, int *wp, int *hp)
uint8_t w
Definition: llviddspenc.c:38
#define av_err2str(errnum)
Convenience macro, the return value should be used only directly in function arguments but never stan...
Definition: error.h:119
AVFormatContext * ctx
Definition: movenc.c:48
#define NBITS
Definition: vf_paletteuse.c:65
static int apply_palette(AVFilterLink *inlink, AVFrame *in, AVFrame **outf)
uint8_t min[3]
static const AVFilterPad inputs[]
Definition: af_acontrast.c:193
if(ret< 0)
Definition: vf_mcdeint.c:279
static void error(const char *err)
AVFrame * av_frame_clone(const AVFrame *src)
Create a new frame that references the same data as src.
Definition: frame.c:538
static int activate(AVFilterContext *ctx)
static const AVFilterPad outputs[]
Definition: af_acontrast.c:203
#define FF_ARRAY_ELEMS(a)
static int config_output(AVFilterLink *outlink)
#define src1
Definition: h264pred.c:139
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
Extend the frame to infinity.
Definition: framesync.h:75
static int cmp_pal_entry(const void *a, const void *b)
void * av_dynarray2_add(void **tab_ptr, int *nb_ptr, size_t elem_size, const uint8_t *elem_data)
Add an element of size elem_size to a dynamic array.
Definition: mem.c:322
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:249
static av_always_inline int color_get(PaletteUseContext *s, uint32_t color, uint8_t a, uint8_t r, uint8_t g, uint8_t b, const enum color_search_method search_method)
Check if the requested color is in the cache already.
#define AV_PIX_FMT_RGB32
Definition: pixfmt.h:342
AVFrame * last_out
Definition: vf_paletteuse.c:99
void * buf
Definition: avisynth_c.h:690
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
Definition: error.h:50
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
Describe the class of an AVClass context structure.
Definition: log.h:67
#define DITHERING_ENTRIES(color_search)
Filter definition.
Definition: avfilter.h:144
const char * name
Filter name.
Definition: avfilter.h:148
static void load_colormap(PaletteUseContext *s)
const VDPAUPixFmtMap * map
#define DECLARE_CMP_FUNC(name, pos)
#define OFFSET(x)
AVFilterLink ** outputs
array of pointers to output links
Definition: avfilter.h:350
#define AVPALETTE_COUNT
Definition: pixfmt.h:33
int av_frame_make_writable(AVFrame *frame)
Ensure that the frame data is writable, avoiding data copy if possible.
Definition: frame.c:609
#define FLAGS
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:232
int
uint8_t pal_entry
Definition: vf_paletteuse.c:70
struct cache_node cache[CACHE_SIZE]
Definition: vf_paletteuse.c:86
int(* cmp_func)(const void *, const void *)
static double c[64]
struct cached_color * entries
Definition: vf_paletteuse.c:74
static const uint64_t c2
Definition: murmur3.c:50
static av_always_inline int set_frame(PaletteUseContext *s, AVFrame *out, AVFrame *in, int x_start, int y_start, int w, int h, enum dithering_mode dither, const enum color_search_method search_method)
static av_cold void uninit(AVFilterContext *ctx)
A list of supported formats for one end of a filter link.
Definition: formats.h:64
An instance of a filter.
Definition: avfilter.h:338
uint8_t palette_id
Definition: vf_paletteuse.c:60
int height
Definition: frame.h:276
FILE * out
Definition: movenc.c:54
#define av_freep(p)
#define av_always_inline
Definition: attributes.h:39
static const AVFilterPad paletteuse_inputs[]
static av_always_inline uint8_t colormap_nearest_bruteforce(const uint32_t *palette, const uint8_t *argb, const int trans_thresh)
#define CACHE_SIZE
Definition: vf_paletteuse.c:66
internal API functions
static av_always_inline int diff(const uint8_t *c1, const uint8_t *c2, const int trans_thresh)
struct color_node map[AVPALETTE_COUNT]
Definition: vf_paletteuse.c:87
float min
uint32_t value
AVPixelFormat
Pixel format.
Definition: pixfmt.h:60
#define AV_QSORT(p, num, type, cmp)
Quicksort This sort is fast, and fully inplace but not stable and it is possible to construct input t...
Definition: qsort.h:33
for(j=16;j >0;--j)
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
Definition: frame.c:652
int ordered_dither[8 *8]
Definition: vf_paletteuse.c:96
static void debug_mean_error(PaletteUseContext *s, const AVFrame *in1, const AVFrame *in2, int frame_count)