ADDPS

ADDPS — Add Packed Single-Precision Floating-Point Values

Opcode/Instruction Op / En 64/32 bit Mode Support CPUID Feature Flag Description
NP 0F 58 /r ADDPS xmm1, xmm2/m128 A V/V SSE Add packed single-precision floating-point values from xmm2/m128 to xmm1 and store result in xmm1.
VEX.128.0F.WIG 58 /r VADDPS xmm1,xmm2, xmm3/m128 B V/V AVX Add packed single-precision floating-point values from xmm3/m128 to xmm2 and store result in xmm1.
VEX.256.0F.WIG 58 /r VADDPS ymm1, ymm2, ymm3/m256 B V/V AVX Add packed single-precision floating-point values from ymm3/m256 to ymm2 and store result in ymm1.
EVEX.128.0F.W0 58 /r VADDPS xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcst C V/V AVX512VL AVX512F Add packed single-precision floating-point values from xmm3/m128/m32bcst to xmm2 and store result in xmm1 with writemask k1.
EVEX.256.0F.W0 58 /r VADDPS ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcst C V/V AVX512VL AVX512F Add packed single-precision floating-point values from ymm3/m256/m32bcst to ymm2 and store result in ymm1 with writemask k1.
EVEX.512.0F.W0 58 /r VADDPS zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcst {er} C V/V AVX512F Add packed single-precision floating-point values from zmm3/m512/m32bcst to zmm2 and store result in zmm1 with writemask k1.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA
B NA ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
C Full ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA

Description

Add four, eight or sixteen packed single-precision floating-point values from the first source operand with the second source operand, and stores the packed single-precision floating-point results in the destination operand.

EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the corresponding ZMM register destination are zeroed.

VEX.128 encoded version: the first source operand is a XMM register. The second source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper Bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified.

Operation

VADDPS (EVEX encoded versions) when src2 operand is a register

(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
    THEN
        SET_RM(EVEX.RC);
    ELSE
        SET_RM(MXCSR.RM);
FI;
FOR j←0 TO KL-1
    i←j * 32
    IF k1[j] OR *no writemask*
        THEN DEST[i+31:i]←SRC1[i+31:i] + SRC2[i+31:i]
        ELSE
            IF *merging-masking* ; merging-masking
                THEN *DEST[i+31:i] remains unchanged*
                ELSE ; zeroing-masking
                    DEST[i+31:i] ← 0
            FI
    FI;
ENDFOR;
DEST[MAXVL-1:VL] ← 0

VADDPS (EVEX encoded versions) when src2 operand is a memory source

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j←0 TO KL-1
    i←j * 32
    IF k1[j] OR *no writemask*
        THEN
            IF (EVEX.b = 1)
                THEN
                    DEST[i+31:i]←SRC1[i+31:i] + SRC2[31:0]
                ELSE
                    DEST[i+31:i]←SRC1[i+31:i] + SRC2[i+31:i]
            FI;
        ELSE
            IF *merging-masking* ; merging-masking
                THEN *DEST[i+31:i] remains unchanged*
                ELSE ; zeroing-masking
                    DEST[i+31:i] ← 0
            FI
    FI;
ENDFOR;
DEST[MAXVL-1:VL] ← 0

VADDPS (VEX.256 encoded version)

DEST[31:0]←SRC1[31:0] + SRC2[31:0]
DEST[63:32]←SRC1[63:32] + SRC2[63:32]
DEST[95:64]←SRC1[95:64] + SRC2[95:64]
DEST[127:96]←SRC1[127:96] + SRC2[127:96]
DEST[159:128]←SRC1[159:128] + SRC2[159:128]
DEST[191:160]←SRC1[191:160] + SRC2[191:160]
DEST[223:192]←SRC1[223:192] + SRC2[223:192]
DEST[255:224]←SRC1[255:224] + SRC2[255:224].
DEST[MAXVL-1:256] ← 0

VADDPS (VEX.128 encoded version)

DEST[31:0]←SRC1[31:0] + SRC2[31:0]
DEST[63:32]←SRC1[63:32] + SRC2[63:32]
DEST[95:64]←SRC1[95:64] + SRC2[95:64]
DEST[127:96]←SRC1[127:96] + SRC2[127:96]
DEST[MAXVL-1:128] ← 0
ADDPS (128-bit Legacy SSE version)
DEST[31:0]←SRC1[31:0] + SRC2[31:0]
DEST[63:32]←SRC1[63:32] + SRC2[63:32]
DEST[95:64]←SRC1[95:64] + SRC2[95:64]
DEST[127:96]←SRC1[127:96] + SRC2[127:96]
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VADDPS __m512 _mm512_add_ps (__m512 a, __m512 b);
VADDPS __m512 _mm512_mask_add_ps (__m512 s, __mmask16 k, __m512 a, __m512 b);
VADDPS __m512 _mm512_maskz_add_ps (__mmask16 k, __m512 a, __m512 b);
VADDPS __m256 _mm256_mask_add_ps (__m256 s, __mmask8 k, __m256 a, __m256 b);
VADDPS __m256 _mm256_maskz_add_ps (__mmask8 k, __m256 a, __m256 b);
VADDPS __m128 _mm_mask_add_ps (__m128d s, __mmask8 k, __m128 a, __m128 b);
VADDPS __m128 _mm_maskz_add_ps (__mmask8 k, __m128 a, __m128 b);
VADDPS __m512 _mm512_add_round_ps (__m512 a, __m512 b, int);
VADDPS __m512 _mm512_mask_add_round_ps (__m512 s, __mmask16 k, __m512 a, __m512 b, int);
VADDPS __m512 _mm512_maskz_add_round_ps (__mmask16 k, __m512 a, __m512 b, int);
ADDPS __m256 _mm256_add_ps (__m256 a, __m256 b);
ADDPS __m128 _mm_add_ps (__m128 a, __m128 b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

VEX-encoded instruction, see Exceptions Type 2.

EVEX-encoded instruction, see Exceptions Type E2.