numpy.ma.masked_object¶
- numpy.ma.masked_object(x, value, copy=True, shrink=True)[source]¶
- Mask the array x where the data are exactly equal to value. - This function is similar to masked_values, but only suitable for object arrays: for floating point, use masked_values instead. - Parameters: - x : array_like - Array to mask - value : object - Comparison value - copy : {True, False}, optional - Whether to return a copy of x. - shrink : {True, False}, optional - Whether to collapse a mask full of False to nomask - Returns: - result : MaskedArray - The result of masking x where equal to value. - See also - masked_where
- Mask where a condition is met.
- masked_equal
- Mask where equal to a given value (integers).
- masked_values
- Mask using floating point equality.
 - Examples - >>> import numpy.ma as ma >>> food = np.array(['green_eggs', 'ham'], dtype=object) >>> # don't eat spoiled food >>> eat = ma.masked_object(food, 'green_eggs') >>> print eat [-- ham] >>> # plain ol` ham is boring >>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object) >>> eat = ma.masked_object(fresh_food, 'green_eggs') >>> print eat [cheese ham pineapple] - Note that mask is set to nomask if possible. - >>> eat masked_array(data = [cheese ham pineapple], mask = False, fill_value=?)