OpenCV  4.1.0
Open Source Computer Vision
Functions
Math with F1-transform support

Functions

void cv::ft::FT12D_components (InputArray matrix, InputArray kernel, OutputArray components)
 Computes components of the array using direct \(F^1\)-transform.
 
void cv::ft::FT12D_createPolynomMatrixHorizontal (int radius, OutputArray matrix, const int chn)
 Creates horizontal matrix for \(F^1\)-transform computation.
 
void cv::ft::FT12D_createPolynomMatrixVertical (int radius, OutputArray matrix, const int chn)
 Creates vertical matrix for \(F^1\)-transform computation.
 
void cv::ft::FT12D_inverseFT (InputArray components, InputArray kernel, OutputArray output, int width, int height)
 Computes inverse \(F^1\)-transfrom.
 
void cv::ft::FT12D_polynomial (InputArray matrix, InputArray kernel, OutputArray c00, OutputArray c10, OutputArray c01, OutputArray components, InputArray mask=noArray())
 Computes elements of \(F^1\)-transform components.
 
void cv::ft::FT12D_process (InputArray matrix, InputArray kernel, OutputArray output, InputArray mask=noArray())
 Computes \(F^1\)-transfrom and inverse \(F^1\)-transfrom at once.
 

Detailed Description

Fuzzy transform ( \(F^1\)-transform) of the 1th degree transforms whole image to a matrix of its components. Each component is polynomial of the 1th degree carrying information about average color and average gradient of certain subarea.

Function Documentation

void cv::ft::FT12D_components ( InputArray  matrix,
InputArray  kernel,
OutputArray  components 
)

Computes components of the array using direct \(F^1\)-transform.

Parameters
matrixInput array.
kernelKernel used for processing. Function ft::createKernel can be used.
componentsOutput 32-bit float array for the components.

The function computes linear components using predefined kernel.

void cv::ft::FT12D_createPolynomMatrixHorizontal ( int  radius,
OutputArray  matrix,
const int  chn 
)

Creates horizontal matrix for \(F^1\)-transform computation.

Parameters
radiusRadius of the basic function.
matrixThe horizontal matrix.
chnNumber of channels.

The function creates helper horizontal matrix for \(F^1\)-transfrom processing. It is used for gradient computation.

void cv::ft::FT12D_createPolynomMatrixVertical ( int  radius,
OutputArray  matrix,
const int  chn 
)

Creates vertical matrix for \(F^1\)-transform computation.

Parameters
radiusRadius of the basic function.
matrixThe vertical matrix.
chnNumber of channels.

The function creates helper vertical matrix for \(F^1\)-transfrom processing. It is used for gradient computation.

void cv::ft::FT12D_inverseFT ( InputArray  components,
InputArray  kernel,
OutputArray  output,
int  width,
int  height 
)

Computes inverse \(F^1\)-transfrom.

Parameters
componentsInput 32-bit float single channel array for the components.
kernelKernel used for processing. The same kernel as for components computation must be used.
outputOutput 32-bit float array.
widthWidth of the output array.
heightHeight of the output array.

Computation of inverse \(F^1\)-transform.

void cv::ft::FT12D_polynomial ( InputArray  matrix,
InputArray  kernel,
OutputArray  c00,
OutputArray  c10,
OutputArray  c01,
OutputArray  components,
InputArray  mask = noArray() 
)

Computes elements of \(F^1\)-transform components.

Parameters
matrixInput array.
kernelKernel used for processing. Function ft::createKernel can be used.
c00Elements represent average color.
c10Elements represent average vertical gradient.
c01Elements represent average horizontal gradient.
componentsOutput 32-bit float array for the components.
maskMask can be used for unwanted area marking.

The function computes components and its elements using predefined kernel and mask.

void cv::ft::FT12D_process ( InputArray  matrix,
InputArray  kernel,
OutputArray  output,
InputArray  mask = noArray() 
)

Computes \(F^1\)-transfrom and inverse \(F^1\)-transfrom at once.

Parameters
matrixInput matrix.
kernelKernel used for processing. Function ft::createKernel can be used.
outputOutput 32-bit float array.
maskMask used for unwanted area marking.

This function computes \(F^1\)-transfrom and inverse \(F^1\)-transfotm in one step. It is fully sufficient and optimized for cv::Mat.

Note
F-transform technique of first degreee is described in paperVlas:FT.