OpenCV
4.1.0
Open Source Computer Vision
|
Classes | |
class | BaseOCR |
class | ERFilter |
Base class for 1st and 2nd stages of Neumann and Matas scene text detection algorithm. More... | |
struct | ERStat |
The ERStat structure represents a class-specific Extremal Region (ER). More... | |
class | OCRBeamSearchDecoder |
OCRBeamSearchDecoder class provides an interface for OCR using Beam Search algorithm. More... | |
class | OCRHMMDecoder |
OCRHMMDecoder class provides an interface for OCR using Hidden Markov Models. More... | |
class | OCRHolisticWordRecognizer |
OCRHolisticWordRecognizer class provides the functionallity of segmented wordspotting. Given a predefined vocabulary , a DictNet is employed to select the most probable word given an input image. More... | |
class | OCRTesseract |
OCRTesseract class provides an interface with the tesseract-ocr API (v3.02.02) in C++. More... | |
class | TextDetector |
An abstract class providing interface for text detection algorithms. More... | |
class | TextDetectorCNN |
TextDetectorCNN class provides the functionallity of text bounding box detection. This class is representing to find bounding boxes of text words given an input image. This class uses OpenCV dnn module to load pre-trained model described in. More... | |
Enumerations | |
enum | { ERFILTER_NM_RGBLGrad, ERFILTER_NM_IHSGrad } |
computeNMChannels operation modes More... | |
enum | { OCR_LEVEL_WORD, OCR_LEVEL_TEXTLINE } |
enum | classifier_type { OCR_KNN_CLASSIFIER = 0, OCR_CNN_CLASSIFIER = 1 } |
enum | decoder_mode { OCR_DECODER_VITERBI = 0 } |
enum | erGrouping_Modes { ERGROUPING_ORIENTATION_HORIZ, ERGROUPING_ORIENTATION_ANY } |
text::erGrouping operation modes More... | |
enum | ocr_engine_mode { OEM_TESSERACT_ONLY, OEM_CUBE_ONLY, OEM_TESSERACT_CUBE_COMBINED, OEM_DEFAULT } |
Tesseract.OcrEngineMode Enumeration. More... | |
enum | page_seg_mode { PSM_OSD_ONLY, PSM_AUTO_OSD, PSM_AUTO_ONLY, PSM_AUTO, PSM_SINGLE_COLUMN, PSM_SINGLE_BLOCK_VERT_TEXT, PSM_SINGLE_BLOCK, PSM_SINGLE_LINE, PSM_SINGLE_WORD, PSM_CIRCLE_WORD, PSM_SINGLE_CHAR } |
Tesseract.PageSegMode Enumeration. More... | |
Functions | |
void | computeNMChannels (InputArray _src, OutputArrayOfArrays _channels, int _mode=ERFILTER_NM_RGBLGrad) |
Compute the different channels to be processed independently in the N&M algorithm. | |
Ptr< ERFilter > | createERFilterNM1 (const Ptr< ERFilter::Callback > &cb, int thresholdDelta=1, float minArea=(float) 0.00025, float maxArea=(float) 0.13, float minProbability=(float) 0.4, bool nonMaxSuppression=true, float minProbabilityDiff=(float) 0.1) |
Create an Extremal Region Filter for the 1st stage classifier of N&M algorithm. | |
Ptr< ERFilter > | createERFilterNM1 (const String &filename, int thresholdDelta=1, float minArea=(float) 0.00025, float maxArea=(float) 0.13, float minProbability=(float) 0.4, bool nonMaxSuppression=true, float minProbabilityDiff=(float) 0.1) |
Reads an Extremal Region Filter for the 1st stage classifier of N&M algorithm from the provided path e.g. /path/to/cpp/trained_classifierNM1.xml. | |
Ptr< ERFilter > | createERFilterNM2 (const Ptr< ERFilter::Callback > &cb, float minProbability=(float) 0.3) |
Create an Extremal Region Filter for the 2nd stage classifier of N&M algorithm. | |
Ptr< ERFilter > | createERFilterNM2 (const String &filename, float minProbability=(float) 0.3) |
Reads an Extremal Region Filter for the 2nd stage classifier of N&M algorithm from the provided path e.g. /path/to/cpp/trained_classifierNM2.xml. | |
void | createOCRHMMTransitionsTable (std::string &vocabulary, std::vector< std::string > &lexicon, OutputArray transition_probabilities_table) |
Utility function to create a tailored language model transitions table from a given list of words (lexicon). | |
Mat | createOCRHMMTransitionsTable (const String &vocabulary, std::vector< cv::String > &lexicon) |
void | detectRegions (InputArray image, const Ptr< ERFilter > &er_filter1, const Ptr< ERFilter > &er_filter2, std::vector< std::vector< Point > > ®ions) |
void | detectRegions (InputArray image, const Ptr< ERFilter > &er_filter1, const Ptr< ERFilter > &er_filter2, std::vector< Rect > &groups_rects, int method=ERGROUPING_ORIENTATION_HORIZ, const String &filename=String(), float minProbability=(float) 0.5) |
Extracts text regions from image. | |
void | erGrouping (InputArray img, InputArrayOfArrays channels, std::vector< std::vector< ERStat > > ®ions, std::vector< std::vector< Vec2i > > &groups, std::vector< Rect > &groups_rects, int method=ERGROUPING_ORIENTATION_HORIZ, const std::string &filename=std::string(), float minProbablity=0.5) |
Find groups of Extremal Regions that are organized as text blocks. | |
void | erGrouping (InputArray image, InputArray channel, std::vector< std::vector< Point > > regions, std::vector< Rect > &groups_rects, int method=ERGROUPING_ORIENTATION_HORIZ, const String &filename=String(), float minProbablity=(float) 0.5) |
Ptr< ERFilter::Callback > | loadClassifierNM1 (const String &filename) |
Allow to implicitly load the default classifier when creating an ERFilter object. | |
Ptr< ERFilter::Callback > | loadClassifierNM2 (const String &filename) |
Allow to implicitly load the default classifier when creating an ERFilter object. | |
Ptr < OCRBeamSearchDecoder::ClassifierCallback > | loadOCRBeamSearchClassifierCNN (const String &filename) |
Allow to implicitly load the default character classifier when creating an OCRBeamSearchDecoder object. | |
Ptr < OCRHMMDecoder::ClassifierCallback > | loadOCRHMMClassifier (const String &filename, int classifier) |
Allow to implicitly load the default character classifier when creating an OCRHMMDecoder object. | |
Ptr < OCRHMMDecoder::ClassifierCallback > | loadOCRHMMClassifierCNN (const String &filename) |
Allow to implicitly load the default character classifier when creating an OCRHMMDecoder object. | |
Ptr < OCRHMMDecoder::ClassifierCallback > | loadOCRHMMClassifierNM (const String &filename) |
Allow to implicitly load the default character classifier when creating an OCRHMMDecoder object. | |
void | MSERsToERStats (InputArray image, std::vector< std::vector< Point > > &contours, std::vector< std::vector< ERStat > > ®ions) |
Converts MSER contours (vector<Point>) to ERStat regions. | |
void cv::text::createOCRHMMTransitionsTable | ( | std::string & | vocabulary, |
std::vector< std::string > & | lexicon, | ||
OutputArray | transition_probabilities_table | ||
) |
Utility function to create a tailored language model transitions table from a given list of words (lexicon).
vocabulary | The language vocabulary (chars when ASCII English text). |
lexicon | The list of words that are expected to be found in a particular image. |
transition_probabilities_table | Output table with transition probabilities between character pairs. cols == rows == vocabulary.size(). |
The function calculate frequency statistics of character pairs from the given lexicon and fills the output transition_probabilities_table with them. The transition_probabilities_table can be used as input in the OCRHMMDecoder::create() and OCRBeamSearchDecoder::create() methods.
Mat cv::text::createOCRHMMTransitionsTable | ( | const String & | vocabulary, |
std::vector< cv::String > & | lexicon | ||
) |
Ptr<OCRBeamSearchDecoder::ClassifierCallback> cv::text::loadOCRBeamSearchClassifierCNN | ( | const String & | filename | ) |
Allow to implicitly load the default character classifier when creating an OCRBeamSearchDecoder object.
filename | The XML or YAML file with the classifier model (e.g. OCRBeamSearch_CNN_model_data.xml.gz) |
The CNN default classifier is based in the scene text recognition method proposed by Adam Coates & Andrew NG in [Coates11a]. The character classifier consists in a Single Layer Convolutional Neural Network and a linear classifier. It is applied to the input image in a sliding window fashion, providing a set of recognitions at each window location.