OpenCV
4.1.0
Open Source Computer Vision
|
Functions | |
void | cv::sfm::reconstruct (InputArrayOfArrays points2d, OutputArray Ps, OutputArray points3d, InputOutputArray K, bool is_projective=false) |
Reconstruct 3d points from 2d correspondences while performing autocalibration. | |
void | cv::sfm::reconstruct (InputArrayOfArrays points2d, OutputArray Rs, OutputArray Ts, InputOutputArray K, OutputArray points3d, bool is_projective=false) |
Reconstruct 3d points from 2d correspondences while performing autocalibration. | |
void | cv::sfm::reconstruct (const std::vector< String > images, OutputArray Ps, OutputArray points3d, InputOutputArray K, bool is_projective=false) |
Reconstruct 3d points from 2d images while performing autocalibration. | |
void | cv::sfm::reconstruct (const std::vector< String > images, OutputArray Rs, OutputArray Ts, InputOutputArray K, OutputArray points3d, bool is_projective=false) |
Reconstruct 3d points from 2d images while performing autocalibration. | |
void cv::sfm::reconstruct | ( | InputArrayOfArrays | points2d, |
OutputArray | Ps, | ||
OutputArray | points3d, | ||
InputOutputArray | K, | ||
bool | is_projective = false |
||
) |
Reconstruct 3d points from 2d correspondences while performing autocalibration.
points2d | Input vector of vectors of 2d points (the inner vector is per image). |
Ps | Output vector with the 3x4 projections matrices of each image. |
points3d | Output array with estimated 3d points. |
K | Input/Output camera matrix \(K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\). Input parameters used as initial guess. |
is_projective | if true, the cameras are supposed to be projective. |
This method calls below signature and extracts projection matrices from estimated K, R and t.
void cv::sfm::reconstruct | ( | InputArrayOfArrays | points2d, |
OutputArray | Rs, | ||
OutputArray | Ts, | ||
InputOutputArray | K, | ||
OutputArray | points3d, | ||
bool | is_projective = false |
||
) |
Reconstruct 3d points from 2d correspondences while performing autocalibration.
points2d | Input vector of vectors of 2d points (the inner vector is per image). |
Rs | Output vector of 3x3 rotations of the camera. |
Ts | Output vector of 3x1 translations of the camera. |
points3d | Output array with estimated 3d points. |
K | Input/Output camera matrix \(K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\). Input parameters used as initial guess. |
is_projective | if true, the cameras are supposed to be projective. |
Internally calls libmv simple pipeline routine with some default parameters by instatiating SFMLibmvEuclideanReconstruction class.
void cv::sfm::reconstruct | ( | const std::vector< String > | images, |
OutputArray | Ps, | ||
OutputArray | points3d, | ||
InputOutputArray | K, | ||
bool | is_projective = false |
||
) |
Reconstruct 3d points from 2d images while performing autocalibration.
images | a vector of string with the images paths. |
Ps | Output vector with the 3x4 projections matrices of each image. |
points3d | Output array with estimated 3d points. |
K | Input/Output camera matrix \(K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\). Input parameters used as initial guess. |
is_projective | if true, the cameras are supposed to be projective. |
This method calls below signature and extracts projection matrices from estimated K, R and t.
void cv::sfm::reconstruct | ( | const std::vector< String > | images, |
OutputArray | Rs, | ||
OutputArray | Ts, | ||
InputOutputArray | K, | ||
OutputArray | points3d, | ||
bool | is_projective = false |
||
) |
Reconstruct 3d points from 2d images while performing autocalibration.
images | a vector of string with the images paths. |
Rs | Output vector of 3x3 rotations of the camera. |
Ts | Output vector of 3x1 translations of the camera. |
points3d | Output array with estimated 3d points. |
K | Input/Output camera matrix \(K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\). Input parameters used as initial guess. |
is_projective | if true, the cameras are supposed to be projective. |
Internally calls libmv simple pipeline routine with some default parameters by instatiating SFMLibmvEuclideanReconstruction class.