Background subtraction based on counting.
More...
#include <opencv2/bgsegm.hpp>
|
virtual void | apply (InputArray image, OutputArray fgmask, double learningRate=-1) CV_OVERRIDE=0 |
| Computes a foreground mask.
|
|
virtual void | getBackgroundImage (OutputArray backgroundImage) const CV_OVERRIDE=0 |
| Computes a background image.
|
|
virtual bool | getIsParallel () const =0 |
| Returns if we're parallelizing the algorithm.
|
|
virtual int | getMaxPixelStability () const =0 |
| Returns maximum allowed credit for a pixel in history.
|
|
virtual int | getMinPixelStability () const =0 |
| Returns number of frames with same pixel color to consider stable.
|
|
virtual bool | getUseHistory () const =0 |
| Returns if we're giving a pixel credit for being stable for a long time.
|
|
virtual void | setIsParallel (bool value)=0 |
| Sets if we're parallelizing the algorithm.
|
|
virtual void | setMaxPixelStability (int value)=0 |
| Sets the maximum allowed credit for a pixel in history.
|
|
virtual void | setMinPixelStability (int value)=0 |
| Sets the number of frames with same pixel color to consider stable.
|
|
virtual void | setUseHistory (bool value)=0 |
| Sets if we're giving a pixel credit for being stable for a long time.
|
|
Background subtraction based on counting.
About as fast as MOG2 on a high end system. More than twice faster than MOG2 on cheap hardware (benchmarked on Raspberry Pi3).
Algorithm by Sagi Zeevi ( https://github.com/sagi-z/BackgroundSubtractorCNT )
virtual void cv::bgsegm::BackgroundSubtractorCNT::apply |
( |
InputArray |
image, |
|
|
OutputArray |
fgmask, |
|
|
double |
learningRate = -1 |
|
) |
| |
|
pure virtual |
Python: |
---|
| fgmask | = | cv.bgsegm_BackgroundSubtractorCNT.apply( | image[, fgmask[, learningRate]] | ) |
Computes a foreground mask.
- Parameters
-
image | Next video frame. |
fgmask | The output foreground mask as an 8-bit binary image. |
learningRate | The value between 0 and 1 that indicates how fast the background model is learnt. Negative parameter value makes the algorithm to use some automatically chosen learning rate. 0 means that the background model is not updated at all, 1 means that the background model is completely reinitialized from the last frame. |
Implements cv::BackgroundSubtractor.
virtual void cv::bgsegm::BackgroundSubtractorCNT::getBackgroundImage |
( |
OutputArray |
backgroundImage | ) |
const |
|
pure virtual |
Python: |
---|
| backgroundImage | = | cv.bgsegm_BackgroundSubtractorCNT.getBackgroundImage( | [, backgroundImage] | ) |
Computes a background image.
- Parameters
-
backgroundImage | The output background image. |
- Note
- Sometimes the background image can be very blurry, as it contain the average background statistics.
Implements cv::BackgroundSubtractor.
virtual bool cv::bgsegm::BackgroundSubtractorCNT::getIsParallel |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| retval | = | cv.bgsegm_BackgroundSubtractorCNT.getIsParallel( | | ) |
Returns if we're parallelizing the algorithm.
virtual int cv::bgsegm::BackgroundSubtractorCNT::getMaxPixelStability |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| retval | = | cv.bgsegm_BackgroundSubtractorCNT.getMaxPixelStability( | | ) |
Returns maximum allowed credit for a pixel in history.
virtual int cv::bgsegm::BackgroundSubtractorCNT::getMinPixelStability |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| retval | = | cv.bgsegm_BackgroundSubtractorCNT.getMinPixelStability( | | ) |
Returns number of frames with same pixel color to consider stable.
virtual bool cv::bgsegm::BackgroundSubtractorCNT::getUseHistory |
( |
| ) |
const |
|
pure virtual |
Python: |
---|
| retval | = | cv.bgsegm_BackgroundSubtractorCNT.getUseHistory( | | ) |
Returns if we're giving a pixel credit for being stable for a long time.
virtual void cv::bgsegm::BackgroundSubtractorCNT::setIsParallel |
( |
bool |
value | ) |
|
|
pure virtual |
Python: |
---|
| None | = | cv.bgsegm_BackgroundSubtractorCNT.setIsParallel( | value | ) |
Sets if we're parallelizing the algorithm.
virtual void cv::bgsegm::BackgroundSubtractorCNT::setMaxPixelStability |
( |
int |
value | ) |
|
|
pure virtual |
Python: |
---|
| None | = | cv.bgsegm_BackgroundSubtractorCNT.setMaxPixelStability( | value | ) |
Sets the maximum allowed credit for a pixel in history.
virtual void cv::bgsegm::BackgroundSubtractorCNT::setMinPixelStability |
( |
int |
value | ) |
|
|
pure virtual |
Python: |
---|
| None | = | cv.bgsegm_BackgroundSubtractorCNT.setMinPixelStability( | value | ) |
Sets the number of frames with same pixel color to consider stable.
virtual void cv::bgsegm::BackgroundSubtractorCNT::setUseHistory |
( |
bool |
value | ) |
|
|
pure virtual |
Python: |
---|
| None | = | cv.bgsegm_BackgroundSubtractorCNT.setUseHistory( | value | ) |
Sets if we're giving a pixel credit for being stable for a long time.
The documentation for this class was generated from the following file: