The PostgreSQL formatting functions provide a powerful set of tools for converting various data types (date/time, integer, floating point, numeric) to formatted strings and for converting from formatted strings to specific data types. Table 9.23 lists them. These functions all follow a common calling convention: the first argument is the value to be formatted and the second argument is a template that defines the output or input format.
Table 9.23. Formatting Functions
There is also a single-argument to_timestamp
function; see Table 9.30.
to_timestamp
and to_date
exist to handle input formats that cannot be converted by
simple casting. For most standard date/time formats, simply casting the
source string to the required data type works, and is much easier.
Similarly, to_number
is unnecessary for standard numeric
representations.
In a to_char
output template string, there are certain
patterns that are recognized and replaced with appropriately-formatted
data based on the given value. Any text that is not a template pattern is
simply copied verbatim. Similarly, in an input template string (for the
other functions), template patterns identify the values to be supplied by
the input data string. If there are characters in the template string
that are not template patterns, the corresponding characters in the input
data string are simply skipped over (whether or not they are equal to the
template string characters).
Table 9.24 shows the template patterns available for formatting date and time values.
Table 9.24. Template Patterns for Date/Time Formatting
Modifiers can be applied to any template pattern to alter its
behavior. For example, FMMonth
is the Month
pattern with the
FM
modifier.
Table 9.25 shows the
modifier patterns for date/time formatting.
Table 9.25. Template Pattern Modifiers for Date/Time Formatting
Modifier | Description | Example |
---|---|---|
FM prefix | fill mode (suppress leading zeroes and padding blanks) | FMMonth |
TH suffix | upper case ordinal number suffix | DDTH , e.g., 12TH |
th suffix | lower case ordinal number suffix | DDth , e.g., 12th |
FX prefix | fixed format global option (see usage notes) | FX Month DD Day |
TM prefix | translation mode (print localized day and month names based on lc_time) | TMMonth |
SP suffix | spell mode (not implemented) | DDSP |
Usage notes for date/time formatting:
FM
suppresses leading zeroes and trailing blanks
that would otherwise be added to make the output of a pattern be
fixed-width. In PostgreSQL,
FM
modifies only the next specification, while in
Oracle FM
affects all subsequent
specifications, and repeated FM
modifiers
toggle fill mode on and off.
TM
does not include trailing blanks.
to_timestamp
and to_date
ignore
the TM
modifier.
to_timestamp
and to_date
skip multiple blank spaces in the input string unless the
FX
option is used. For example,
to_timestamp('2000 JUN', 'YYYY MON')
works, but
to_timestamp('2000 JUN', 'FXYYYY MON')
returns an error
because to_timestamp
expects one space only.
FX
must be specified as the first item in
the template.
Ordinary text is allowed in to_char
templates and will be output literally. You can put a substring
in double quotes to force it to be interpreted as literal text
even if it contains template patterns. For example, in
'"Hello Year "YYYY'
, the YYYY
will be replaced by the year data, but the single Y
in Year
will not be.
In to_date
, to_number
,
and to_timestamp
, literal text and double-quoted
strings result in skipping the number of characters contained in the
string; for example "XX"
skips two input characters
(whether or not they are XX
).
If you want to have a double quote in the output you must
precede it with a backslash, for example '\"YYYY
Month\"'
.
Backslashes are not otherwise special outside of double-quoted
strings. Within a double-quoted string, a backslash causes the
next character to be taken literally, whatever it is (but this
has no special effect unless the next character is a double quote
or another backslash).
In to_timestamp
and to_date
,
if the year format specification is less than four digits, e.g.
YYY
, and the supplied year is less than four digits,
the year will be adjusted to be nearest to the year 2020, e.g.
95
becomes 1995.
In to_timestamp
and to_date
,
the YYYY
conversion has a restriction when
processing years with more than 4 digits. You must
use some non-digit character or template after YYYY
,
otherwise the year is always interpreted as 4 digits. For example
(with the year 20000):
to_date('200001131', 'YYYYMMDD')
will be
interpreted as a 4-digit year; instead use a non-digit
separator after the year, like
to_date('20000-1131', 'YYYY-MMDD')
or
to_date('20000Nov31', 'YYYYMonDD')
.
In to_timestamp
and to_date
,
the CC
(century) field is accepted but ignored
if there is a YYY
, YYYY
or
Y,YYY
field. If CC
is used with
YY
or Y
then the result is
computed as that year in the specified century. If the century is
specified but the year is not, the first year of the century
is assumed.
In to_timestamp
and to_date
,
weekday names or numbers (DAY
, D
,
and related field types) are accepted but are ignored for purposes of
computing the result. The same is true for quarter
(Q
) fields.
In to_timestamp
and to_date
,
an ISO 8601 week-numbering date (as distinct from a Gregorian date)
can be specified in one of two ways:
Year, week number, and weekday: for
example to_date('2006-42-4', 'IYYY-IW-ID')
returns the date 2006-10-19
.
If you omit the weekday it is assumed to be 1 (Monday).
Year and day of year: for example to_date('2006-291',
'IYYY-IDDD')
also returns 2006-10-19
.
Attempting to enter a date using a mixture of ISO 8601 week-numbering fields and Gregorian date fields is nonsensical, and will cause an error. In the context of an ISO 8601 week-numbering year, the concept of a “month” or “day of month” has no meaning. In the context of a Gregorian year, the ISO week has no meaning.
While to_date
will reject a mixture of
Gregorian and ISO week-numbering date
fields, to_char
will not, since output format
specifications like YYYY-MM-DD (IYYY-IDDD)
can be
useful. But avoid writing something like IYYY-MM-DD
;
that would yield surprising results near the start of the year.
(See Section 9.9.1 for more
information.)
In to_timestamp
, millisecond
(MS
) or microsecond (US
)
fields are used as the
seconds digits after the decimal point. For example
to_timestamp('12.3', 'SS.MS')
is not 3 milliseconds,
but 300, because the conversion treats it as 12 + 0.3 seconds.
So, for the format SS.MS
, the input values
12.3
, 12.30
,
and 12.300
specify the
same number of milliseconds. To get three milliseconds, one must write
12.003
, which the conversion treats as
12 + 0.003 = 12.003 seconds.
Here is a more
complex example:
to_timestamp('15:12:02.020.001230', 'HH24:MI:SS.MS.US')
is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds +
1230 microseconds = 2.021230 seconds.
to_char(..., 'ID')
's day of the week numbering
matches the extract(isodow from ...)
function, but
to_char(..., 'D')
's does not match
extract(dow from ...)
's day numbering.
to_char(interval)
formats HH
and
HH12
as shown on a 12-hour clock, for example zero hours
and 36 hours both output as 12
, while HH24
outputs the full hour value, which can exceed 23 in
an interval
value.
Table 9.26 shows the template patterns available for formatting numeric values.
Table 9.26. Template Patterns for Numeric Formatting
Usage notes for numeric formatting:
0
specifies a digit position that will always be printed,
even if it contains a leading/trailing zero. 9
also
specifies a digit position, but if it is a leading zero then it will
be replaced by a space, while if it is a trailing zero and fill mode
is specified then it will be deleted. (For to_number()
,
these two pattern characters are equivalent.)
The pattern characters S
, L
, D
,
and G
represent the sign, currency symbol, decimal point,
and thousands separator characters defined by the current locale
(see lc_monetary
and lc_numeric). The pattern characters period
and comma represent those exact characters, with the meanings of
decimal point and thousands separator, regardless of locale.
If no explicit provision is made for a sign
in to_char()
's pattern, one column will be reserved for
the sign, and it will be anchored to (appear just left of) the
number. If S
appears just left of some 9
's,
it will likewise be anchored to the number.
A sign formatted using SG
, PL
, or
MI
is not anchored to
the number; for example,
to_char(-12, 'MI9999')
produces '- 12'
but to_char(-12, 'S9999')
produces ' -12'
.
(The Oracle implementation does not allow the use of
MI
before 9
, but rather
requires that 9
precede
MI
.)
TH
does not convert values less than zero
and does not convert fractional numbers.
PL
, SG
, and
TH
are PostgreSQL
extensions.
In to_number
, if non-data template patterns such
as L
or TH
are used, the
corresponding number of input characters are skipped, whether or not
they match the template pattern, unless they are data characters
(that is, digits, sign, decimal point, or comma). For
example, TH
would skip two non-data characters.
V
with to_char
multiplies the input values by
10^
, where
n
n
is the number of digits following
V
. V
with
to_number
divides in a similar manner.
to_char
and to_number
do not support the use of
V
combined with a decimal point
(e.g., 99.9V99
is not allowed).
EEEE
(scientific notation) cannot be used in
combination with any of the other formatting patterns or
modifiers other than digit and decimal point patterns, and must be at the end of the format string
(e.g., 9.99EEEE
is a valid pattern).
Certain modifiers can be applied to any template pattern to alter its
behavior. For example, FM99.99
is the 99.99
pattern with the
FM
modifier.
Table 9.27 shows the
modifier patterns for numeric formatting.
Table 9.27. Template Pattern Modifiers for Numeric Formatting
Table 9.28 shows some
examples of the use of the to_char
function.
Table 9.28. to_char
Examples