Distributed communication package - torch.distributed¶
Backends¶
torch.distributed
supports three backends, each with
different capabilities. The table below shows which functions are available
for use with CPU / CUDA tensors.
MPI supports CUDA only if the implementation used to build PyTorch supports it.
Backend | gloo |
mpi |
nccl |
|||
---|---|---|---|---|---|---|
Device | CPU | GPU | CPU | GPU | CPU | GPU |
send | ✓ | ✘ | ✓ | ? | ✘ | ✘ |
recv | ✓ | ✘ | ✓ | ? | ✘ | ✘ |
broadcast | ✓ | ✓ | ✓ | ? | ✘ | ✓ |
all_reduce | ✓ | ✓ | ✓ | ? | ✘ | ✓ |
reduce | ✓ | ✘ | ✓ | ? | ✘ | ✓ |
all_gather | ✓ | ✘ | ✓ | ? | ✘ | ✓ |
gather | ✓ | ✘ | ✓ | ? | ✘ | ✘ |
scatter | ✓ | ✘ | ✓ | ? | ✘ | ✘ |
barrier | ✓ | ✘ | ✓ | ? | ✘ | ✓ |
Backends that come with PyTorch¶
PyTorch distributed currently only supports Linux. By default, the Gloo and NCCL backends are built and included in PyTorch distributed (NCCL only when building with CUDA). MPI is an optional backend that can only be included if you build PyTorch from source. (e.g. building PyTorch on a host that has MPI installed.)
Which backend to use?¶
In the past, we were often asked: “which backend should I use?”.
- Rule of thumb
- Use the NCCL backend for distributed GPU training
- Use the Gloo backend for distributed CPU training.
- GPU hosts with InfiniBand interconnect
- Use NCCL, since it’s the only backend that currently supports InfiniBand and GPUDirect.
- GPU hosts with Ethernet interconnect
- Use NCCL, since it currently provides the best distributed GPU training performance, especially for multiprocess single-node or multi-node distributed training. If you encounter any problem with NCCL, use Gloo as the fallback option. (Note that Gloo currently runs slower than NCCL for GPUs.)
- CPU hosts with InfiniBand interconnect
- If your InfiniBand has enabled IP over IB, use Gloo, otherwise, use MPI instead. We are planning on adding InfiniBand support for Gloo in the upcoming releases.
- CPU hosts with Ethernet interconnect
- Use Gloo, unless you have specific reasons to use MPI.
Common environment variables¶
Choosing the network interface to use¶
By default, both NCCL and Gloo backends will try to find the network interface to use for communication. However, this is not always guaranteed to be successful from our experiences. Therefore, if you encounter any problem on either backend not being able to find the correct network interface. You can try to set the following environment variables (each one applicable to its respective backend):
- NCCL_SOCKET_IFNAME, for example
export NCCL_SOCKET_IFNAME=eth0
- GLOO_SOCKET_IFNAME, for example
export GLOO_SOCKET_IFNAME=eth0
Other NCCL environment variables¶
NCCL has also provided a number of environment variables for fine-tuning purposes.
Commonly used ones include the following for debugging purposes:
export NCCL_DEBUG=INFO
export NCCL_DEBUG_SUBSYS=ALL
For the full list of NCCL environment variables, please refer to NVIDIA NCCL’s official documentation
Basics¶
The torch.distributed package provides PyTorch support and communication primitives
for multiprocess parallelism across several computation nodes running on one or more
machines. The class torch.nn.parallel.DistributedDataParallel()
builds on this
functionality to provide synchronous distributed training as a wrapper around any
PyTorch model. This differs from the kinds of parallelism provided by
Multiprocessing package - torch.multiprocessing and torch.nn.DataParallel()
in that it supports
multiple network-connected machines and in that the user must explicitly launch a separate
copy of the main training script for each process.
In the single-machine synchronous case, torch.distributed or the
torch.nn.parallel.DistributedDataParallel()
wrapper may still have advantages over other
approaches to data-parallelism, including torch.nn.DataParallel()
:
- Each process maintains its own optimizer and performs a complete optimization step with each iteration. While this may appear redundant, since the gradients have already been gathered together and averaged across processes and are thus the same for every process, this means that no parameter broadcast step is needed, reducing time spent transferring tensors between nodes.
- Each process contains an independent Python interpreter, eliminating the extra interpreter overhead and “GIL-thrashing” that comes from driving several execution threads, model replicas, or GPUs from a single Python process. This is especially important for models that make heavy use of the Python runtime, including models with recurrent layers or many small components.
Initialization¶
The package needs to be initialized using the torch.distributed.init_process_group()
function before calling any other methods. This blocks until all processes have
joined.
Currently three initialization methods are supported:
TCP initialization¶
There are two ways to initialize using TCP, both requiring a network address
reachable from all processes and a desired world_size
. The first way
requires specifying an address that belongs to the rank 0 process. This
initialization method requires that all processes have manually specified ranks.
Note that multicast address is not supported anymore in the latest distributed
package. group_name
is deprecated as well.
import torch.distributed as dist
# Use address of one of the machines
dist.init_process_group(backend, init_method='tcp://10.1.1.20:23456',
rank=args.rank, world_size=4)
Environment variable initialization¶
This method will read the configuration from environment variables, allowing one to fully customize how the information is obtained. The variables to be set are:
MASTER_PORT
- required; has to be a free port on machine with rank 0MASTER_ADDR
- required (except for rank 0); address of rank 0 nodeWORLD_SIZE
- required; can be set either here, or in a call to init functionRANK
- required; can be set either here, or in a call to init function
The machine with rank 0 will be used to set up all connections.
This is the default method, meaning that init_method
does not have to be specified (or
can be env://
).
Groups¶
By default collectives operate on the default group (also called the world) and
require all processes to enter the distributed function call. However, some workloads can benefit
from more fine-grained communication. This is where distributed groups come
into play. new_group()
function can be
used to create new groups, with arbitrary subsets of all processes. It returns
an opaque group handle that can be given as a group
argument to all collectives
(collectives are distributed functions to exchange information in certain well-known programming patterns).
Currently torch.distributed does not support creating groups with different backends.
In other words, each group being created will use the same backend as you specified in
init_process_group()
.
Point-to-point communication¶
isend()
and irecv()
return distributed request objects when used. In general, the type of this object is unspecified
as they should never be created manually, but they are guaranteed to support two methods:
is_completed()
- returns True if the operation has finishedwait()
- will block the process until the operation is finished.is_completed()
is guaranteed to return True once it returns.
Synchronous and asynchronous collective operations¶
Every collective operation function supports the following two kinds of operations:
synchronous operation - the default mode, when async_op
is set to False.
when the function returns, it is guaranteed that
the collective operation is performed (not necessarily completed if it’s a CUDA op since all
CUDA ops are asynchronous), and any further function calls depending on the data of the
collective operation can be called. In the synchronous mode, the collective function does not
return anything
asynchronous operation - when async_op
is set to True. The collective operation function
returns a distributed request object. In general, you don’t need to create it manually and it
is guaranteed to support two methods:
is_completed()
- returns True if the operation has finishedwait()
- will block the process until the operation is finished.
Collective functions¶
-
class
torch.distributed.
reduce_op
¶ Deprecated enum-like class for reduction operations:
SUM
,PRODUCT
,MIN
, andMAX
.ReduceOp
is recommended to use instead.
Multi-GPU collective functions¶
If you have more than one GPU on each node, when using the NCCL and Gloo backend,
broadcast_multigpu()
all_reduce_multigpu()
reduce_multigpu()
and
all_gather_multigpu()
support distributed collective
operations among multiple GPUs within each node. These functions can potentially
improve the overall distributed training performance and be easily used by
passing a list of tensors. Each Tensor in the passed tensor list needs
to be on a separate GPU device of the host where the function is called. Note
that the length of the tensor list needs to be identical among all the
distributed processes. Also note that currently the multi-GPU collective
functions are only supported by the NCCL backend.
For example, if the system we use for distributed training has 2 nodes, each of which has 8 GPUs. On each of the 16 GPUs, there is a tensor that we would like to all-reduce. The following code can serve as a reference:
Code running on Node 0
import torch
import torch.distributed as dist
dist.init_process_group(backend="nccl",
init_method="file:///distributed_test",
world_size=2,
rank=0)
tensor_list = []
for dev_idx in range(torch.cuda.device_count()):
tensor_list.append(torch.FloatTensor([1]).cuda(dev_idx))
dist.all_reduce_multigpu(tensor_list)
Code running on Node 1
import torch
import torch.distributed as dist
dist.init_process_group(backend="nccl",
init_method="file:///distributed_test",
world_size=2,
rank=1)
tensor_list = []
for dev_idx in range(torch.cuda.device_count()):
tensor_list.append(torch.FloatTensor([1]).cuda(dev_idx))
dist.all_reduce_multigpu(tensor_list)
After the call, all 16 tensors on the two nodes will have the all-reduced value of 16
Launch utility¶
The torch.distributed package also provides a launch utility in torch.distributed.launch. This helper utility can be used to launch multiple processes per node for distributed training. This utility also supports both python2 and python3.
torch.distributed.launch is a module that spawns up multiple distributed training processes on each of the training nodes.
The utility can be used for single-node distributed training, in which one or more processes per node will be spawned. The utility can be used for either CPU training or GPU training. If the utility is used for GPU training, each distributed process will be operating on a single GPU. This can achieve well-improved single-node training performance. It can also be used in multi-node distributed training, by spawning up multiple processes on each node for well-improved multi-node distributed training performance as well. This will especially be benefitial for systems with multiple Infiniband interfaces that have direct-GPU support, since all of them can be utilized for aggregated communication bandwidth.
In both cases of single-node distributed training or multi-node distributed
training, this utility will launch the given number of processes per node
(--nproc_per_node
). If used for GPU training, this number needs to be less
or euqal to the number of GPUs on the current system (nproc_per_node
),
and each process will be operating on a single GPU from GPU 0 to
GPU (nproc_per_node - 1).
How to use this module:
- Single-Node multi-process distributed training
>>> python -m torch.distributed.launch --nproc_per_node=NUM_GPUS_YOU_HAVE
YOUR_TRAINING_SCRIPT.py (--arg1 --arg2 --arg3 and all other
arguments of your training script)
- Multi-Node multi-process distributed training: (e.g. two nodes)
Node 1: (IP: 192.168.1.1, and has a free port: 1234)
>>> python -m torch.distributed.launch --nproc_per_node=NUM_GPUS_YOU_HAVE
--nnodes=2 --node_rank=0 --master_addr="192.168.1.1"
--master_port=1234 YOUR_TRAINING_SCRIPT.py (--arg1 --arg2 --arg3
and all other arguments of your training script)
Node 2:
>>> python -m torch.distributed.launch --nproc_per_node=NUM_GPUS_YOU_HAVE
--nnodes=2 --node_rank=1 --master_addr="192.168.1.1"
--master_port=1234 YOUR_TRAINING_SCRIPT.py (--arg1 --arg2 --arg3
and all other arguments of your training script)
- To look up what optional arguments this module offers:
>>> python -m torch.distributed.launch --help
Important Notices:
1. This utilty and multi-process distributed (single-node or multi-node) GPU training currently only achieves the best performance using the NCCL distributed backend. Thus NCCL backend is the recommended backend to use for GPU training.
2. In your training program, you must parse the command-line argument:
--local_rank=LOCAL_PROCESS_RANK
, which will be provided by this module.
If your training program uses GPUs, you should ensure that your code only
runs on the GPU device of LOCAL_PROCESS_RANK. This can be done by:
Parsing the local_rank argument
>>> import argparse
>>> parser = argparse.ArgumentParser()
>>> parser.add_argument("--local_rank", type=int)
>>> args = parser.parse_args()
Set your device to local rank using either
>>> torch.cuda.set_device(arg.local_rank) # before your code runs
or
>>> with torch.cuda.device(arg.local_rank):
>>> # your code to run
3. In your training program, you are supposed to call the following function
at the beginning to start the distributed backend. You need to make sure that
the init_method uses env://
, which is the only supported init_method
by this module.
torch.distributed.init_process_group(backend='YOUR BACKEND',
init_method='env://')
4. In your training program, you can either use regular distributed functions
or use torch.nn.parallel.DistributedDataParallel()
module. If your
training program uses GPUs for training and you would like to use
torch.nn.parallel.DistributedDataParallel()
module,
here is how to configure it.
model = torch.nn.parallel.DistributedDataParallel(model,
device_ids=[arg.local_rank],
output_device=arg.local_rank)
Please ensure that device_ids
argument is set to be the only GPU device id
that your code will be operating on. This is generally the local rank of the
process. In other words, the device_ids
needs to be [args.local_rank]
,
and output_device
needs to be args.local_rank
in order to use this
utility
Warning
local_rank
is NOT globally unique: it is only unique per process
on a machine. Thus, don’t use it to decide if you should, e.g.,
write to a networked filesystem. See
https://github.com/pytorch/pytorch/issues/12042 for an example of
how things can go wrong if you don’t do this correctly.
Spawn utility¶
The torch.multiprocessing package also provides a spawn
function in torch.multiprocessing.spawn()
. This helper function
can be used to spawn multiple processes. It works by passing in the
function that you want to run and spawns N processes to run it. This
can be used for multiprocess distributed training as well.
For references on how to use it, please refer to PyToch example - ImageNet implementation
Note that this function requires Python 3.4 or higher.