Shortcuts

Autograd mechanics

This note will present an overview of how autograd works and records the operations. It’s not strictly necessary to understand all this, but we recommend getting familiar with it, as it will help you write more efficient, cleaner programs, and can aid you in debugging.

Excluding subgraphs from backward

Every Tensor has a flag: requires_grad that allows for fine grained exclusion of subgraphs from gradient computation and can increase efficiency.

requires_grad

If there’s a single input to an operation that requires gradient, its output will also require gradient. Conversely, only if all inputs don’t require gradient, the output also won’t require it. Backward computation is never performed in the subgraphs, where all Tensors didn’t require gradients.

>>> x = torch.randn(5, 5)  # requires_grad=False by default
>>> y = torch.randn(5, 5)  # requires_grad=False by default
>>> z = torch.randn((5, 5), requires_grad=True)
>>> a = x + y
>>> a.requires_grad
False
>>> b = a + z
>>> b.requires_grad
True

This is especially useful when you want to freeze part of your model, or you know in advance that you’re not going to use gradients w.r.t. some parameters. For example if you want to finetune a pretrained CNN, it’s enough to switch the requires_grad flags in the frozen base, and no intermediate buffers will be saved, until the computation gets to the last layer, where the affine transform will use weights that require gradient, and the output of the network will also require them.

model = torchvision.models.resnet18(pretrained=True)
for param in model.parameters():
    param.requires_grad = False
# Replace the last fully-connected layer
# Parameters of newly constructed modules have requires_grad=True by default
model.fc = nn.Linear(512, 100)

# Optimize only the classifier
optimizer = optim.SGD(model.fc.parameters(), lr=1e-2, momentum=0.9)

How autograd encodes the history

Autograd is reverse automatic differentiation system. Conceptually, autograd records a graph recording all of the operations that created the data as you execute operations, giving you a directed acyclic graph whose leaves are the input tensors and roots are the output tensors. By tracing this graph from roots to leaves, you can automatically compute the gradients using the chain rule.

Internally, autograd represents this graph as a graph of Function objects (really expressions), which can be apply() ed to compute the result of evaluating the graph. When computing the forwards pass, autograd simultaneously performs the requested computations and builds up a graph representing the function that computes the gradient (the .grad_fn attribute of each torch.Tensor is an entry point into this graph). When the forwards pass is completed, we evaluate this graph in the backwards pass to compute the gradients.

An important thing to note is that the graph is recreated from scratch at every iteration, and this is exactly what allows for using arbitrary Python control flow statements, that can change the overall shape and size of the graph at every iteration. You don’t have to encode all possible paths before you launch the training - what you run is what you differentiate.

In-place operations with autograd

Supporting in-place operations in autograd is a hard matter, and we discourage their use in most cases. Autograd’s aggressive buffer freeing and reuse makes it very efficient and there are very few occasions when in-place operations actually lower memory usage by any significant amount. Unless you’re operating under heavy memory pressure, you might never need to use them.

There are two main reasons that limit the applicability of in-place operations:

  1. In-place operations can potentially overwrite values required to compute gradients.
  2. Every in-place operation actually requires the implementation to rewrite the computational graph. Out-of-place versions simply allocate new objects and keep references to the old graph, while in-place operations, require changing the creator of all inputs to the Function representing this operation. This can be tricky, especially if there are many Tensors that reference the same storage (e.g. created by indexing or transposing), and in-place functions will actually raise an error if the storage of modified inputs is referenced by any other Tensor.

In-place correctness checks

Every tensor keeps a version counter, that is incremented every time it is marked dirty in any operation. When a Function saves any tensors for backward, a version counter of their containing Tensor is saved as well. Once you access self.saved_tensors it is checked, and if it is greater than the saved value an error is raised. This ensures that if you’re using in-place functions and not seeing any errors, you can be sure that the computed gradients are correct.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources