Extended maintenance of Ruby 1.9.3 ended on February 23, 2015. Read more
CMath is a library that provides trigonometric and transcendental functions for complex numbers.
To start using this library, simply:
require "cmath"
Square root of a negative number is a complex number.
CMath.sqrt(-9) #=> 0+3.0i
returns the arc cosine of z
# File cmath.rb, line 257
def acos(z)
begin
if z.real? and z >= -1 and z <= 1
acos!(z)
else
(-1.0).i * log(z + 1.0.i * sqrt(1.0 - z * z))
end
rescue NoMethodError
handle_no_method_error
end
end
returns the inverse hyperbolic cosine of z
# File cmath.rb, line 314
def acosh(z)
begin
if z.real? and z >= 1
acosh!(z)
else
log(z + sqrt(z * z - 1.0))
end
rescue NoMethodError
handle_no_method_error
end
end
returns the arc sine of z
# File cmath.rb, line 243
def asin(z)
begin
if z.real? and z >= -1 and z <= 1
asin!(z)
else
(-1.0).i * log(1.0.i * z + sqrt(1.0 - z * z))
end
rescue NoMethodError
handle_no_method_error
end
end
returns the inverse hyperbolic sine of z
# File cmath.rb, line 300
def asinh(z)
begin
if z.real?
asinh!(z)
else
log(z + sqrt(1.0 + z * z))
end
rescue NoMethodError
handle_no_method_error
end
end
returns the arc tangent of z
# File cmath.rb, line 271
def atan(z)
begin
if z.real?
atan!(z)
else
1.0.i * log((1.0.i + z) / (1.0.i - z)) / 2.0
end
rescue NoMethodError
handle_no_method_error
end
end
returns the arc tangent of y divided by x using
the signs of y and x to determine the quadrant
# File cmath.rb, line 286
def atan2(y,x)
begin
if y.real? and x.real?
atan2!(y,x)
else
(-1.0).i * log((x + 1.0.i * y) / sqrt(x * x + y * y))
end
rescue NoMethodError
handle_no_method_error
end
end
returns the inverse hyperbolic tangent of z
# File cmath.rb, line 328
def atanh(z)
begin
if z.real? and z >= -1 and z <= 1
atanh!(z)
else
log((1.0 + z) / (1.0 - z)) / 2.0
end
rescue NoMethodError
handle_no_method_error
end
end
returns the principal value of the cube root of z
# File cmath.rb, line 149
def cbrt(z)
z ** (1.0/3)
end
returns the cosine of z, where z is given in
radians
# File cmath.rb, line 170
def cos(z)
begin
if z.real?
cos!(z)
else
Complex(cos!(z.real) * cosh!(z.imag),
-sin!(z.real) * sinh!(z.imag))
end
rescue NoMethodError
handle_no_method_error
end
end
returns the hyperbolic cosine of z, where z is
given in radians
# File cmath.rb, line 214
def cosh(z)
begin
if z.real?
cosh!(z)
else
Complex(cosh!(z.real) * cos!(z.imag),
sinh!(z.real) * sin!(z.imag))
end
rescue NoMethodError
handle_no_method_error
end
end
Math::E raised to the z power
exp(Complex(0,0)) #=> 1.0+0.0i exp(Complex(0,PI)) #=> -1.0+1.2246467991473532e-16i exp(Complex(0,PI/2.0)) #=> 6.123233995736766e-17+1.0i
# File cmath.rb, line 52
def exp(z)
begin
if z.real?
exp!(z)
else
ere = exp!(z.real)
Complex(ere * cos!(z.imag),
ere * sin!(z.imag))
end
rescue NoMethodError
handle_no_method_error
end
end
Returns the natural logarithm of Complex. If a second argument is given, it will be the base of logarithm.
log(Complex(0,0)) #=> -Infinity+0.0i
# File cmath.rb, line 71
def log(*args)
begin
z, b = args
unless b.nil? || b.kind_of?(Numeric)
raise TypeError, "Numeric Number required"
end
if z.real? and z >= 0 and (b.nil? or b >= 0)
log!(*args)
else
a = Complex(log!(z.abs), z.arg)
if b
a /= log(b)
end
a
end
rescue NoMethodError
handle_no_method_error
end
end
returns the base 10 logarithm of z
# File cmath.rb, line 107
def log10(z)
begin
if z.real? and z >= 0
log10!(z)
else
log(z) / log!(10)
end
rescue NoMethodError
handle_no_method_error
end
end
returns the base 2 logarithm of z
# File cmath.rb, line 93
def log2(z)
begin
if z.real? and z >= 0
log2!(z)
else
log(z) / log!(2)
end
rescue NoMethodError
handle_no_method_error
end
end
returns the sine of z, where z is given in
radians
# File cmath.rb, line 155
def sin(z)
begin
if z.real?
sin!(z)
else
Complex(sin!(z.real) * cosh!(z.imag),
cos!(z.real) * sinh!(z.imag))
end
rescue NoMethodError
handle_no_method_error
end
end
returns the hyperbolic sine of z, where z is
given in radians
# File cmath.rb, line 199
def sinh(z)
begin
if z.real?
sinh!(z)
else
Complex(sinh!(z.real) * cos!(z.imag),
cosh!(z.real) * sin!(z.imag))
end
rescue NoMethodError
handle_no_method_error
end
end
Returns the non-negative square root of Complex.
sqrt(-1) #=> 0+1.0i sqrt(Complex(-1,0)) #=> 0.0+1.0i sqrt(Complex(0,8)) #=> 2.0+2.0i
# File cmath.rb, line 124
def sqrt(z)
begin
if z.real?
if z < 0
Complex(0, sqrt!(-z))
else
sqrt!(z)
end
else
if z.imag < 0 ||
(z.imag == 0 && z.imag.to_s[0] == '-')
sqrt(z.conjugate).conjugate
else
r = z.abs
x = z.real
Complex(sqrt!((r + x) / 2.0), sqrt!((r - x) / 2.0))
end
end
rescue NoMethodError
handle_no_method_error
end
end
returns the tangent of z, where z is given in
radians
# File cmath.rb, line 185
def tan(z)
begin
if z.real?
tan!(z)
else
sin(z) / cos(z)
end
rescue NoMethodError
handle_no_method_error
end
end
returns the hyperbolic tangent of z, where z is
given in radians
# File cmath.rb, line 229
def tanh(z)
begin
if z.real?
tanh!(z)
else
sinh(z) / cosh(z)
end
rescue NoMethodError
handle_no_method_error
end
end
Commenting is here to help enhance the documentation. For example, code samples, or clarification of the documentation.
If you have questions about Ruby or the documentation, please post to one of the Ruby mailing lists. You will get better, faster, help that way.
If you wish to post a correction of the docs, please do so, but also file bug report so that it can be corrected for the next release. Thank you.
If you want to help improve the Ruby documentation, please visit Documenting-ruby.org.