Conditional compilation
Syntax
ConfigurationPredicate :
ConfigurationOption
| ConfigurationAll
| ConfigurationAny
| ConfigurationNotConfigurationOption :
IDENTIFIER (=
(STRING_LITERAL | RAW_STRING_LITERAL))?ConfigurationAll
all
(
ConfigurationPredicateList?)
ConfigurationAny
any
(
ConfigurationPredicateList?)
ConfigurationNot
not
(
ConfigurationPredicate)
ConfigurationPredicateList
ConfigurationPredicate (,
ConfigurationPredicate)*,
?
Conditionally compiled source code is source code that may or may not be
considered a part of the source code depending on certain conditions. Source code can be conditionally compiled
using attributes, cfg
and cfg_attr
, and the built-in cfg
macro.
These conditions are based on the target architecture of the compiled crate,
arbitrary values passed to the compiler, and a few other miscellaneous things
further described below in detail.
Each form of conditional compilation takes a configuration predicate that evaluates to true or false. The predicate is one of the following:
- A configuration option. It is true if the option is set and false if it is unset.
all()
with a comma separated list of configuration predicates. It is false if at least one predicate is false. If there are no predicates, it is true.any()
with a comma separated list of configuration predicates. It is true if at least one predicate is true. If there are no predicates, it is false.not()
with a configuration predicate. It is true if its predicate is false and false if its predicate is true.
Configuration options are names and key-value pairs that are either set or
unset. Names are written as a single identifier such as, for example, unix
.
Key-value pairs are written as an identifier, =
, and then a string. For
example, target_arch = "x86_64"
is a configuration option.
Note: Whitespace around the
=
is ignored.foo="bar"
andfoo = "bar"
are equivalent configuration options.
Keys are not unique in the set of key-value configuration options. For example,
both feature = "std"
and feature = "serde"
can be set at the same time.
Set Configuration Options
Which configuration options are set is determined statically during the compilation of the crate. Certain options are compiler-set based on data about the compilation. Other options are arbitrarily-set, set based on input passed to the compiler outside of the code. It is not possible to set a configuration option from within the source code of the crate being compiled.
Note: For
rustc
, arbitrary-set configuration options are set using the--cfg
flag.
Warning: It is possible for arbitrarily-set configuration options to have the
same value as compiler-set configuration options. For example, it is possible
to do rustc --cfg "unix" program.rs
while compiling to a Windows target, and
have both unix
and windows
configuration options set at the same time. It
is unwise to actually do this.
target_arch
Key-value option set once with the target's CPU architecture. The value is similar to the first element of the platform's target triple, but not identical.
Example values:
"x86"
"x86_64"
"mips"
"powerpc"
"powerpc64"
"arm"
"aarch64"
target_os
Key-value option set once with the target's operating system. This value is similar to the second and third element of the platform's target triple.
Example values:
"windows"
"macos"
"ios"
"linux"
"android"
"freebsd"
"dragonfly"
"bitrig"
"openbsd"
"netbsd"
target_family
Key-value option set at most once with the target's operating system value.
Example values:
"unix"
"windows"
unix
and windows
unix
is set if target_family = "unix"
is set and windows
is set if
target_family = "windows"
is set.
target_env
Key-value option set with further disambiguating information about the target
platform with information about the ABI or libc
used. For historical reasons,
this value is only defined as not the empty-string when actually needed for
disambiguation. Thus, for example, on many GNU platforms, this value will be
empty. This value is similar to the fourth element of the platform's target
triple. One difference is that embedded ABIs such as gnueabihf
will simply
define target_env
as "gnu"
.
Example values:
""
"gnu"
"msvc"
"musl"
target_endian
Key-value option set once with either a value of "little" or "big" depending on the endianness of the target's CPU.
target_pointer_width
Key-value option set once with the target's pointer width in bits. For example,
for targets with 32-bit pointers, this is set to "32"
. Likewise, it is set
to "64"
for targets with 64-bit pointers.
target_has_atomic
Key-value option set for each integer size on which the target can perform atomic operations.
Possible values:
"8"
"16"
"32"
"64"
"128"
"ptr"
target_vendor
Key-value option set once with the vendor of the target.
Example values:
"apple"
"pc"
"sgx"
"unknown"
test
Enabled when compiling the test harness. Done with rustc
by using the
--test
flag.
debug_assertions
Enabled by default when compiling without optimizations.
This can be used to enable extra debugging code in development but not in
production. For example, it controls the behavior of the standard library's
debug_assert!
macro.
proc_macro
Set when the crate being compiled is being compiled with the proc_macro
crate type.
Forms of conditional compilation
The cfg
attribute
Syntax
CfgAttrAttribute :
cfg
(
ConfigurationPredicate)
The cfg
attribute conditionally includes the thing it is attached to based
on a configuration predicate.
It is written as cfg
, (
, a configuration predicate, and finally )
.
If the predicate is true, the thing is rewritten to not have the cfg
attribute
on it. If the predicate is false, the thing is removed from the source code.
Some examples on functions:
# #![allow(unused_variables)] #fn main() { // The function is only included in the build when compiling for macOS #[cfg(target_os = "macos")] fn macos_only() { // ... } // This function is only included when either foo or bar is defined #[cfg(any(foo, bar))] fn needs_foo_or_bar() { // ... } // This function is only included when compiling for a unixish OS with a 32-bit // architecture #[cfg(all(unix, target_pointer_width = "32"))] fn on_32bit_unix() { // ... } // This function is only included when foo is not defined #[cfg(not(foo))] fn needs_not_foo() { // ... } #}
The cfg
attribute is allowed anywhere attributes are allowed except on
generic parameters.
The cfg_attr
attribute
Syntax
CfgAttrAttribute :
cfg_attr
(
ConfigurationPredicate,
MetaItem,
?)
The cfg_attr
attribute conditionally includes attributes based on a
configuration predicate.
It is written as cfg_attr
followed by (
, a configuration predicate, a
metaitem, an optional ,
, and finally a )
.
When the configuration predicate is true, this attribute expands out to be an
attribute of the attribute metaitem. For example, the following module will
either be found at linux.rs
or windows.rs
based on the target.
#[cfg_attr(linux, path = "linux.rs")]
#[cfg_attr(windows, path = "windows.rs")]
mod os;
Note: The
cfg_attr
can expand to anothercfg_attr
. For example,#[cfg_attr(linux, cfg_attr(feature = "multithreaded", some_other_attribute))
is valid. This example would be equivalent to#[cfg_attr(all(linux, feature ="multithreaded"), some_other_attribute)]
.
The cfg_attr
attribute is allowed anywhere attributes are allowed except on
generic parameters.
The cfg
macro
The built-in cfg
macro takes in a single configuration predicate and evaluates
to the true
literal when the predicate is true and the false
literal when
it is false.
For example:
# #![allow(unused_variables)] #fn main() { let machine_kind = if cfg!(unix) { "unix" } else if cfg!(windows) { "windows" } else { "unknown" }; println!("I'm running on a {} machine!", machine_kind); #}