scipy.stats.gennorm¶
- scipy.stats.gennorm = <scipy.stats._continuous_distns.gennorm_gen object at 0x597f510>[source]¶
- A generalized normal continuous random variable. - As an instance of the rv_continuous class, gennorm object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution. - Notes - The probability density function for gennorm is [R400]: - beta gennorm.pdf(x, beta) = --------------- exp(-|x|**beta) 2 gamma(1/beta)- gennorm takes beta as a shape parameter. For beta = 1, it is identical to a Laplace distribution. For beta = 2, it is identical to a normal distribution (with scale=1/sqrt(2)). - References - [R400] - (1, 2) “Generalized normal distribution, Version 1”, https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1 - Examples - >>> from scipy.stats import gennorm >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1) - Calculate a few first moments: - >>> beta = 1.3 >>> mean, var, skew, kurt = gennorm.stats(beta, moments='mvsk') - Display the probability density function (pdf): - >>> x = np.linspace(gennorm.ppf(0.01, beta), ... gennorm.ppf(0.99, beta), 100) >>> ax.plot(x, gennorm.pdf(x, beta), ... 'r-', lw=5, alpha=0.6, label='gennorm pdf') - Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed. - Freeze the distribution and display the frozen pdf: - >>> rv = gennorm(beta) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf') - Check accuracy of cdf and ppf: - >>> vals = gennorm.ppf([0.001, 0.5, 0.999], beta) >>> np.allclose([0.001, 0.5, 0.999], gennorm.cdf(vals, beta)) True - Generate random numbers: - >>> r = gennorm.rvs(beta, size=1000) - And compare the histogram: - >>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show()   - Methods - rvs(beta, loc=0, scale=1, size=1, random_state=None) - Random variates. - pdf(x, beta, loc=0, scale=1) - Probability density function. - logpdf(x, beta, loc=0, scale=1) - Log of the probability density function. - cdf(x, beta, loc=0, scale=1) - Cumulative density function. - logcdf(x, beta, loc=0, scale=1) - Log of the cumulative density function. - sf(x, beta, loc=0, scale=1) - Survival function (also defined as 1 - cdf, but sf is sometimes more accurate). - logsf(x, beta, loc=0, scale=1) - Log of the survival function. - ppf(q, beta, loc=0, scale=1) - Percent point function (inverse of cdf — percentiles). - isf(q, beta, loc=0, scale=1) - Inverse survival function (inverse of sf). - moment(n, beta, loc=0, scale=1) - Non-central moment of order n - stats(beta, loc=0, scale=1, moments='mv') - Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). - entropy(beta, loc=0, scale=1) - (Differential) entropy of the RV. - fit(data, beta, loc=0, scale=1) - Parameter estimates for generic data. - expect(func, args=(beta,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) - Expected value of a function (of one argument) with respect to the distribution. - median(beta, loc=0, scale=1) - Median of the distribution. - mean(beta, loc=0, scale=1) - Mean of the distribution. - var(beta, loc=0, scale=1) - Variance of the distribution. - std(beta, loc=0, scale=1) - Standard deviation of the distribution. - interval(alpha, beta, loc=0, scale=1) - Endpoints of the range that contains alpha percent of the distribution 
