scipy.stats.genpareto¶
- scipy.stats.genpareto = <scipy.stats._continuous_distns.genpareto_gen object at 0x5842a90>[source]¶
- A generalized Pareto continuous random variable. - As an instance of the rv_continuous class, genpareto object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution. - Notes - The probability density function for genpareto is: - genpareto.pdf(x, c) = (1 + c * x)**(-1 - 1/c) - defined for x >= 0 if c >=0, and for 0 <= x <= -1/c if c < 0. - genpareto takes c as a shape parameter. - For c == 0, genpareto reduces to the exponential distribution, expon: - genpareto.pdf(x, c=0) = exp(-x) - For c == -1, genpareto is uniform on [0, 1]: - genpareto.cdf(x, c=-1) = x - The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, genpareto.pdf(x, c, loc, scale) is identically equivalent to genpareto.pdf(y, c) / scale with y = (x - loc) / scale. - Examples - >>> from scipy.stats import genpareto >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1) - Calculate a few first moments: - >>> c = 0.1 >>> mean, var, skew, kurt = genpareto.stats(c, moments='mvsk') - Display the probability density function (pdf): - >>> x = np.linspace(genpareto.ppf(0.01, c), ... genpareto.ppf(0.99, c), 100) >>> ax.plot(x, genpareto.pdf(x, c), ... 'r-', lw=5, alpha=0.6, label='genpareto pdf') - Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed. - Freeze the distribution and display the frozen pdf: - >>> rv = genpareto(c) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf') - Check accuracy of cdf and ppf: - >>> vals = genpareto.ppf([0.001, 0.5, 0.999], c) >>> np.allclose([0.001, 0.5, 0.999], genpareto.cdf(vals, c)) True - Generate random numbers: - >>> r = genpareto.rvs(c, size=1000) - And compare the histogram: - >>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show()   - Methods - rvs(c, loc=0, scale=1, size=1, random_state=None) - Random variates. - pdf(x, c, loc=0, scale=1) - Probability density function. - logpdf(x, c, loc=0, scale=1) - Log of the probability density function. - cdf(x, c, loc=0, scale=1) - Cumulative density function. - logcdf(x, c, loc=0, scale=1) - Log of the cumulative density function. - sf(x, c, loc=0, scale=1) - Survival function (also defined as 1 - cdf, but sf is sometimes more accurate). - logsf(x, c, loc=0, scale=1) - Log of the survival function. - ppf(q, c, loc=0, scale=1) - Percent point function (inverse of cdf — percentiles). - isf(q, c, loc=0, scale=1) - Inverse survival function (inverse of sf). - moment(n, c, loc=0, scale=1) - Non-central moment of order n - stats(c, loc=0, scale=1, moments='mv') - Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). - entropy(c, loc=0, scale=1) - (Differential) entropy of the RV. - fit(data, c, loc=0, scale=1) - Parameter estimates for generic data. - expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) - Expected value of a function (of one argument) with respect to the distribution. - median(c, loc=0, scale=1) - Median of the distribution. - mean(c, loc=0, scale=1) - Mean of the distribution. - var(c, loc=0, scale=1) - Variance of the distribution. - std(c, loc=0, scale=1) - Standard deviation of the distribution. - interval(alpha, c, loc=0, scale=1) - Endpoints of the range that contains alpha percent of the distribution 
