sklearn.datasets
.fetch_olivetti_faces¶
-
sklearn.datasets.
fetch_olivetti_faces
(data_home=None, shuffle=False, random_state=0, download_if_missing=True)[source]¶ Load the Olivetti faces data-set from AT&T (classification).
Download it if necessary.
Classes 40 Samples total 400 Dimensionality 4096 Features real, between 0 and 1 Read more in the User Guide.
Parameters: - data_home : optional, default: None
Specify another download and cache folder for the datasets. By default all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders.
- shuffle : boolean, optional
If True the order of the dataset is shuffled to avoid having images of the same person grouped.
- random_state : int, RandomState instance or None (default=0)
Determines random number generation for dataset shuffling. Pass an int for reproducible output across multiple function calls. See Glossary.
- download_if_missing : optional, True by default
If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site.
Returns: - An object with the following attributes:
- data : numpy array of shape (400, 4096)
Each row corresponds to a ravelled face image of original size 64 x 64 pixels.
- images : numpy array of shape (400, 64, 64)
Each row is a face image corresponding to one of the 40 subjects of the dataset.
- target : numpy array of shape (400, )
Labels associated to each face image. Those labels are ranging from 0-39 and correspond to the Subject IDs.
- DESCR : string
Description of the modified Olivetti Faces Dataset.