sklearn.linear_model
.ARDRegression¶
-
class
sklearn.linear_model.
ARDRegression
(n_iter=300, tol=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-06, compute_score=False, threshold_lambda=10000.0, fit_intercept=True, normalize=False, copy_X=True, verbose=False)[source]¶ Bayesian ARD regression.
Fit the weights of a regression model, using an ARD prior. The weights of the regression model are assumed to be in Gaussian distributions. Also estimate the parameters lambda (precisions of the distributions of the weights) and alpha (precision of the distribution of the noise). The estimation is done by an iterative procedures (Evidence Maximization)
Read more in the User Guide.
Parameters: - n_iter : int, optional
Maximum number of iterations. Default is 300
- tol : float, optional
Stop the algorithm if w has converged. Default is 1.e-3.
- alpha_1 : float, optional
Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. Default is 1.e-6.
- alpha_2 : float, optional
Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. Default is 1.e-6.
- lambda_1 : float, optional
Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. Default is 1.e-6.
- lambda_2 : float, optional
Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. Default is 1.e-6.
- compute_score : boolean, optional
If True, compute the objective function at each step of the model. Default is False.
- threshold_lambda : float, optional
threshold for removing (pruning) weights with high precision from the computation. Default is 1.e+4.
- fit_intercept : boolean, optional
whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). Default is True.
- normalize : boolean, optional, default False
This parameter is ignored when
fit_intercept
is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please usesklearn.preprocessing.StandardScaler
before callingfit
on an estimator withnormalize=False
.- copy_X : boolean, optional, default True.
If True, X will be copied; else, it may be overwritten.
- verbose : boolean, optional, default False
Verbose mode when fitting the model.
Attributes: - coef_ : array, shape = (n_features)
Coefficients of the regression model (mean of distribution)
- alpha_ : float
estimated precision of the noise.
- lambda_ : array, shape = (n_features)
estimated precisions of the weights.
- sigma_ : array, shape = (n_features, n_features)
estimated variance-covariance matrix of the weights
- scores_ : float
if computed, value of the objective function (to be maximized)
Notes
For an example, see examples/linear_model/plot_ard.py.
References
D. J. C. MacKay, Bayesian nonlinear modeling for the prediction competition, ASHRAE Transactions, 1994.
R. Salakhutdinov, Lecture notes on Statistical Machine Learning, http://www.utstat.toronto.edu/~rsalakhu/sta4273/notes/Lecture2.pdf#page=15 Their beta is our
self.alpha_
Their alpha is ourself.lambda_
ARD is a little different than the slide: only dimensions/features for whichself.lambda_ < self.threshold_lambda
are kept and the rest are discarded.Examples
>>> from sklearn import linear_model >>> clf = linear_model.ARDRegression() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) ... # doctest: +NORMALIZE_WHITESPACE ARDRegression(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, normalize=False, threshold_lambda=10000.0, tol=0.001, verbose=False) >>> clf.predict([[1, 1]]) array([1.])
Methods
fit
(X, y)Fit the ARDRegression model according to the given training data and parameters. get_params
([deep])Get parameters for this estimator. predict
(X[, return_std])Predict using the linear model. score
(X, y[, sample_weight])Returns the coefficient of determination R^2 of the prediction. set_params
(**params)Set the parameters of this estimator. -
__init__
(n_iter=300, tol=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-06, compute_score=False, threshold_lambda=10000.0, fit_intercept=True, normalize=False, copy_X=True, verbose=False)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fit
(X, y)[source]¶ Fit the ARDRegression model according to the given training data and parameters.
Iterative procedure to maximize the evidence
Parameters: - X : array-like, shape = [n_samples, n_features]
Training vector, where n_samples in the number of samples and n_features is the number of features.
- y : array, shape = [n_samples]
Target values (integers). Will be cast to X’s dtype if necessary
Returns: - self : returns an instance of self.
-
get_params
(deep=True)[source]¶ Get parameters for this estimator.
Parameters: - deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: - params : mapping of string to any
Parameter names mapped to their values.
-
predict
(X, return_std=False)[source]¶ Predict using the linear model.
In addition to the mean of the predictive distribution, also its standard deviation can be returned.
Parameters: - X : {array-like, sparse matrix}, shape = (n_samples, n_features)
Samples.
- return_std : boolean, optional
Whether to return the standard deviation of posterior prediction.
Returns: - y_mean : array, shape = (n_samples,)
Mean of predictive distribution of query points.
- y_std : array, shape = (n_samples,)
Standard deviation of predictive distribution of query points.
-
score
(X, y, sample_weight=None)[source]¶ Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
Parameters: - X : array-like, shape = (n_samples, n_features)
Test samples. For some estimators this may be a precomputed kernel matrix instead, shape = (n_samples, n_samples_fitted], where n_samples_fitted is the number of samples used in the fitting for the estimator.
- y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True values for X.
- sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: - score : float
R^2 of self.predict(X) wrt. y.
-
set_params
(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: - self