3.2.4.1.1. sklearn.linear_model
.ElasticNetCV¶
-
class
sklearn.linear_model.
ElasticNetCV
(l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=0.0001, cv='warn', copy_X=True, verbose=0, n_jobs=None, positive=False, random_state=None, selection='cyclic')[source]¶ Elastic Net model with iterative fitting along a regularization path.
See glossary entry for cross-validation estimator.
Read more in the User Guide.
Parameters: - l1_ratio : float or array of floats, optional
float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For
l1_ratio = 0
the penalty is an L2 penalty. Forl1_ratio = 1
it is an L1 penalty. For0 < l1_ratio < 1
, the penalty is a combination of L1 and L2 This parameter can be a list, in which case the different values are tested by cross-validation and the one giving the best prediction score is used. Note that a good choice of list of values for l1_ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in[.1, .5, .7, .9, .95, .99, 1]
- eps : float, optional
Length of the path.
eps=1e-3
means thatalpha_min / alpha_max = 1e-3
.- n_alphas : int, optional
Number of alphas along the regularization path, used for each l1_ratio.
- alphas : numpy array, optional
List of alphas where to compute the models. If None alphas are set automatically
- fit_intercept : boolean
whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
- normalize : boolean, optional, default False
This parameter is ignored when
fit_intercept
is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please usesklearn.preprocessing.StandardScaler
before callingfit
on an estimator withnormalize=False
.- precompute : True | False | ‘auto’ | array-like
Whether to use a precomputed Gram matrix to speed up calculations. If set to
'auto'
let us decide. The Gram matrix can also be passed as argument.- max_iter : int, optional
The maximum number of iterations
- tol : float, optional
The tolerance for the optimization: if the updates are smaller than
tol
, the optimization code checks the dual gap for optimality and continues until it is smaller thantol
.- cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy. Possible inputs for cv are:
- None, to use the default 3-fold cross-validation,
- integer, to specify the number of folds.
- CV splitter,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs,
KFold
is used.Refer User Guide for the various cross-validation strategies that can be used here.
Changed in version 0.20:
cv
default value if None will change from 3-fold to 5-fold in v0.22.- copy_X : boolean, optional, default True
If
True
, X will be copied; else, it may be overwritten.- verbose : bool or integer
Amount of verbosity.
- n_jobs : int or None, optional (default=None)
Number of CPUs to use during the cross validation.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.- positive : bool, optional
When set to
True
, forces the coefficients to be positive.- random_state : int, RandomState instance or None, optional, default None
The seed of the pseudo random number generator that selects a random feature to update. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. Used when
selection
== ‘random’.- selection : str, default ‘cyclic’
If set to ‘random’, a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to ‘random’) often leads to significantly faster convergence especially when tol is higher than 1e-4.
Attributes: - alpha_ : float
The amount of penalization chosen by cross validation
- l1_ratio_ : float
The compromise between l1 and l2 penalization chosen by cross validation
- coef_ : array, shape (n_features,) | (n_targets, n_features)
Parameter vector (w in the cost function formula),
- intercept_ : float | array, shape (n_targets, n_features)
Independent term in the decision function.
- mse_path_ : array, shape (n_l1_ratio, n_alpha, n_folds)
Mean square error for the test set on each fold, varying l1_ratio and alpha.
- alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas)
The grid of alphas used for fitting, for each l1_ratio.
- n_iter_ : int
number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha.
See also
Notes
For an example, see examples/linear_model/plot_lasso_model_selection.py.
To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array.
The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. More specifically, the optimization objective is:
1 / (2 * n_samples) * ||y - Xw||^2_2 + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2
If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:
a * L1 + b * L2
for:
alpha = a + b and l1_ratio = a / (a + b).
Examples
>>> from sklearn.linear_model import ElasticNetCV >>> from sklearn.datasets import make_regression
>>> X, y = make_regression(n_features=2, random_state=0) >>> regr = ElasticNetCV(cv=5, random_state=0) >>> regr.fit(X, y) ElasticNetCV(alphas=None, copy_X=True, cv=5, eps=0.001, fit_intercept=True, l1_ratio=0.5, max_iter=1000, n_alphas=100, n_jobs=None, normalize=False, positive=False, precompute='auto', random_state=0, selection='cyclic', tol=0.0001, verbose=0) >>> print(regr.alpha_) # doctest: +ELLIPSIS 0.1994727942696716 >>> print(regr.intercept_) # doctest: +ELLIPSIS 0.398... >>> print(regr.predict([[0, 0]])) # doctest: +ELLIPSIS [0.398...]
Methods
fit
(X, y)Fit linear model with coordinate descent get_params
([deep])Get parameters for this estimator. path
(X, y[, l1_ratio, eps, n_alphas, …])Compute elastic net path with coordinate descent predict
(X)Predict using the linear model score
(X, y[, sample_weight])Returns the coefficient of determination R^2 of the prediction. set_params
(**params)Set the parameters of this estimator. -
__init__
(l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=0.0001, cv='warn', copy_X=True, verbose=0, n_jobs=None, positive=False, random_state=None, selection='cyclic')[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fit
(X, y)[source]¶ Fit linear model with coordinate descent
Fit is on grid of alphas and best alpha estimated by cross-validation.
Parameters: - X : {array-like}, shape (n_samples, n_features)
Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output, X can be sparse.
- y : array-like, shape (n_samples,) or (n_samples, n_targets)
Target values
-
get_params
(deep=True)[source]¶ Get parameters for this estimator.
Parameters: - deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: - params : mapping of string to any
Parameter names mapped to their values.
-
static
path
(X, y, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, check_input=True, **params)[source]¶ Compute elastic net path with coordinate descent
The elastic net optimization function varies for mono and multi-outputs.
For mono-output tasks it is:
1 / (2 * n_samples) * ||y - Xw||^2_2 + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2
For multi-output tasks it is:
(1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2
Where:
||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}
i.e. the sum of norm of each row.
Read more in the User Guide.
Parameters: - X : {array-like}, shape (n_samples, n_features)
Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If
y
is mono-output thenX
can be sparse.- y : ndarray, shape (n_samples,) or (n_samples, n_outputs)
Target values
- l1_ratio : float, optional
float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties).
l1_ratio=1
corresponds to the Lasso- eps : float
Length of the path.
eps=1e-3
means thatalpha_min / alpha_max = 1e-3
- n_alphas : int, optional
Number of alphas along the regularization path
- alphas : ndarray, optional
List of alphas where to compute the models. If None alphas are set automatically
- precompute : True | False | ‘auto’ | array-like
Whether to use a precomputed Gram matrix to speed up calculations. If set to
'auto'
let us decide. The Gram matrix can also be passed as argument.- Xy : array-like, optional
Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed.
- copy_X : boolean, optional, default True
If
True
, X will be copied; else, it may be overwritten.- coef_init : array, shape (n_features, ) | None
The initial values of the coefficients.
- verbose : bool or integer
Amount of verbosity.
- return_n_iter : bool
whether to return the number of iterations or not.
- positive : bool, default False
If set to True, forces coefficients to be positive. (Only allowed when
y.ndim == 1
).- check_input : bool, default True
Skip input validation checks, including the Gram matrix when provided assuming there are handled by the caller when check_input=False.
- **params : kwargs
keyword arguments passed to the coordinate descent solver.
Returns: - alphas : array, shape (n_alphas,)
The alphas along the path where models are computed.
- coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)
Coefficients along the path.
- dual_gaps : array, shape (n_alphas,)
The dual gaps at the end of the optimization for each alpha.
- n_iters : array-like, shape (n_alphas,)
The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. (Is returned when
return_n_iter
is set to True).
Notes
For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.
-
predict
(X)[source]¶ Predict using the linear model
Parameters: - X : array_like or sparse matrix, shape (n_samples, n_features)
Samples.
Returns: - C : array, shape (n_samples,)
Returns predicted values.
-
score
(X, y, sample_weight=None)[source]¶ Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
Parameters: - X : array-like, shape = (n_samples, n_features)
Test samples. For some estimators this may be a precomputed kernel matrix instead, shape = (n_samples, n_samples_fitted], where n_samples_fitted is the number of samples used in the fitting for the estimator.
- y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True values for X.
- sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: - score : float
R^2 of self.predict(X) wrt. y.
-
set_params
(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: - self